題目列表(包括答案和解析)
已知向量夾角為 ,且;則
【解析】因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912420929634592/SYS201207091242343432627474_ST.files/image005.png">,所以,即,所以,整理得,解得或(舍去).
已知的三個內(nèi)角所對的邊分別為,且滿足.
(1)求角的大小;
(2)若,的面積為,求的值.
【解析】本試題主要是考查了解三角形中正弦定理和正弦面積公式的求解運(yùn)用。
(1)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012090810154393286434/SYS201209081016322334125622_ST.files/image009.png">,利用正弦定理得到C的值。
(2)根據(jù),然后結(jié)合余弦定理得到C的值。
已知,且.
(1)求的值;
(2)求的值.
【解析】本試題主要考查了二項(xiàng)式定理的運(yùn)用,以及系數(shù)求和的賦值思想的運(yùn)用。第一問中,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061918574873515193/SYS201206191859349851240042_ST.files/image005.png">,所以,可得,第二問中,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061918574873515193/SYS201206191859349851240042_ST.files/image008.png">,所以,所以,利用組合數(shù)性質(zhì)可知。
解:(1)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061918574873515193/SYS201206191859349851240042_ST.files/image005.png">,所以, ……3分
化簡可得,且,解得. …………6分
(2),所以,
所以,
已知數(shù)列的前項(xiàng)和為,且 (N*),其中.
(Ⅰ) 求的通項(xiàng)公式;
(Ⅱ) 設(shè) (N*).
①證明: ;
② 求證:.
【解析】本試題主要考查了數(shù)列的通項(xiàng)公式的求解和運(yùn)用。運(yùn)用關(guān)系式,表示通項(xiàng)公式,然后得到第一問,第二問中利用放縮法得到,②由于,
所以利用放縮法,從此得到結(jié)論。
解:(Ⅰ)當(dāng)時,由得. ……2分
若存在由得,
從而有,與矛盾,所以.
從而由得得. ……6分
(Ⅱ)①證明:
證法一:∵∴
∴
∴.…………10分
證法二:,下同證法一. ……10分
證法三:(利用對偶式)設(shè),,
則.又,也即,所以,也即,又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921381634452104/SYS201206192140215789581034_ST.files/image037.png">,所以.即
………10分
證法四:(數(shù)學(xué)歸納法)①當(dāng)時, ,命題成立;
②假設(shè)時,命題成立,即,
則當(dāng)時,
即
即
故當(dāng)時,命題成立.
綜上可知,對一切非零自然數(shù),不等式②成立. ………………10分
②由于,
所以,
從而.
也即
已知等比數(shù)列中,,且,公比,(1)求;(2)設(shè),求數(shù)列的前項(xiàng)和
【解析】第一問,因?yàn)橛深}設(shè)可知
又 故
或,又由題設(shè) 從而
第二問中,
當(dāng)時,,時
故時,
時,
分別討論得到結(jié)論。
由題設(shè)可知
又 故
或,又由題設(shè)
從而……………………4分
(2)
當(dāng)時,,時……………………6分
故時,……8分
時,
……………………10分
綜上可得
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com