題目列表(包括答案和解析)
已知橢圓的長(zhǎng)軸長(zhǎng)為,焦點(diǎn)是,點(diǎn)到直線(xiàn)的距離為,過(guò)點(diǎn)且傾斜角為銳角的直線(xiàn)與橢圓交于A、B兩點(diǎn),使得.
(1)求橢圓的標(biāo)準(zhǔn)方程; (2)求直線(xiàn)l的方程.
【解析】(1)中利用點(diǎn)F1到直線(xiàn)x=-的距離為可知-+=.得到a2=4而c=,∴b2=a2-c2=1.
得到橢圓的方程。(2)中,利用,設(shè)出點(diǎn)A(x1,y1)、B(x2,y2).,借助于向量公式再利用 A、B在橢圓+y2=1上, 得到坐標(biāo)的值,然后求解得到直線(xiàn)方程。
解:(1)∵F1到直線(xiàn)x=-的距離為,∴-+=.
∴a2=4而c=,∴b2=a2-c2=1.
∵橢圓的焦點(diǎn)在x軸上,∴所求橢圓的方程為+y2=1.……4分
(2)設(shè)A(x1,y1)、B(x2,y2).由第(1)問(wèn)知
,
∴……6分
∵A、B在橢圓+y2=1上,
∴……10分
∴l(xiāng)的斜率為=.
∴l(xiāng)的方程為y=(x-),即x-y-=0.
已知中心在原點(diǎn)O,焦點(diǎn)F1、F2在x軸上的橢圓E經(jīng)過(guò)點(diǎn)C(2,2),且拋物線(xiàn)的焦點(diǎn)為F1.
(Ⅰ)求橢圓E的方程;
(Ⅱ)垂直于OC的直線(xiàn)l與橢圓E交于A、B兩點(diǎn),當(dāng)以AB為直徑的圓P與y軸相切時(shí),求直線(xiàn)l的方程和圓P的方程.
【解析】本試題主要考查了橢圓的方程的求解以及直線(xiàn)與橢圓的位置關(guān)系的運(yùn)用。第一問(wèn)中,設(shè)出橢圓的方程,然后結(jié)合拋物線(xiàn)的焦點(diǎn)坐標(biāo)得到,又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921190757897157/SYS201206192120259226615718_ST.files/image003.png">,這樣可知得到。第二問(wèn)中設(shè)直線(xiàn)l的方程為y=-x+m與橢圓聯(lián)立方程組可以得到
,再利用可以結(jié)合韋達(dá)定理求解得到m的值和圓p的方程。
解:(Ⅰ)設(shè)橢圓E的方程為
①………………………………1分
②………………2分
③ 由①、②、③得a2=12,b2=6…………3分
所以橢圓E的方程為…………………………4分
(Ⅱ)依題意,直線(xiàn)OC斜率為1,由此設(shè)直線(xiàn)l的方程為y=-x+m,……………5分
代入橢圓E方程,得…………………………6分
………………………7分
、………………8分
………………………9分
……………………………10分
當(dāng)m=3時(shí),直線(xiàn)l方程為y=-x+3,此時(shí),x1 +x2=4,圓心為(2,1),半徑為2,
圓P的方程為(x-2)2+(y-1)2=4;………………………………11分
同理,當(dāng)m=-3時(shí),直線(xiàn)l方程為y=-x-3,
圓P的方程為(x+2)2+(y+1)2=4
已知點(diǎn)為圓上的動(dòng)點(diǎn),且不在軸上,軸,垂足為,線(xiàn)段中點(diǎn)的軌跡為曲線(xiàn),過(guò)定點(diǎn)任作一條與軸不垂直的直線(xiàn),它與曲線(xiàn)交于、兩點(diǎn)。
(I)求曲線(xiàn)的方程;
(II)試證明:在軸上存在定點(diǎn),使得總能被軸平分
【解析】第一問(wèn)中設(shè)為曲線(xiàn)上的任意一點(diǎn),則點(diǎn)在圓上,
∴,曲線(xiàn)的方程為
第二問(wèn)中,設(shè)點(diǎn)的坐標(biāo)為,直線(xiàn)的方程為, ………………3分
代入曲線(xiàn)的方程,可得
∵,∴
確定結(jié)論直線(xiàn)與曲線(xiàn)總有兩個(gè)公共點(diǎn).
然后設(shè)點(diǎn),的坐標(biāo)分別, ,則,
要使被軸平分,只要得到。
(1)設(shè)為曲線(xiàn)上的任意一點(diǎn),則點(diǎn)在圓上,
∴,曲線(xiàn)的方程為. ………………2分
(2)設(shè)點(diǎn)的坐標(biāo)為,直線(xiàn)的方程為, ………………3分
代入曲線(xiàn)的方程,可得 ,……5分
∵,∴,
∴直線(xiàn)與曲線(xiàn)總有兩個(gè)公共點(diǎn).(也可根據(jù)點(diǎn)M在橢圓的內(nèi)部得到此結(jié)論)
………………6分
設(shè)點(diǎn),的坐標(biāo)分別, ,則,
要使被軸平分,只要, ………………9分
即,, ………………10分
也就是,,
即,即只要 ………………12分
當(dāng)時(shí),(*)對(duì)任意的s都成立,從而總能被軸平分.
所以在x軸上存在定點(diǎn),使得總能被軸平分
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com