解:(1).??????????????? 1分 查看更多

 

題目列表(包括答案和解析)

.已知:在平面直角坐標(biāo)系中,拋物線)交軸于AB兩點(diǎn),交軸于點(diǎn)C,且對(duì)稱軸為直線

(1)求該拋物線的解析式及頂點(diǎn)D的坐標(biāo);

(2)若點(diǎn)P(0,t)是軸上的一個(gè)動(dòng)點(diǎn),請(qǐng)進(jìn)行如下探究:

探究一:如圖1,設(shè)△PAD的面積為S,令Wt?S,當(dāng)0<t<4時(shí),W是否有最大值?如果有,求出W的最大值和此時(shí)t的值;如果沒有,說明理由;

探究二:如圖2,是否存在以PA、D為頂點(diǎn)的三角形與Rt△AOC相似?如果存在,求點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說明理由.

(參考資料:拋物線對(duì)稱軸是直線

 


查看答案和解析>>

 “一方有難,八方支援”。在抗擊“5?12”汶川特大地震災(zāi)害中,某市組織20輛汽車裝運(yùn)食品、藥品、生活用品三種救災(zāi)物資共100噸到災(zāi)民安置點(diǎn).按計(jì)劃20輛汽車都要裝運(yùn),每輛汽車只能裝運(yùn)同一種救災(zāi)物資且必須裝滿。根據(jù)下表提供的信息,解答下列問題:

物資種類

食品

藥品

生活用品

每輛汽車運(yùn)載量(噸)

6

5

4

每噸所需運(yùn)費(fèi)(元噸)

120

160

100

(1)設(shè)裝運(yùn)食品的車輛數(shù)為,裝運(yùn)藥品的車輛數(shù)為,求的函數(shù)關(guān)系式;

(2)如果裝運(yùn)食品的車輛數(shù)不少于5輛,裝運(yùn)藥品的車輛數(shù)不少于4輛,那么車輛的安排有幾種方案?并寫出每種安排方案;

(3)在(2)的條件下,若要求總運(yùn)費(fèi)最少,應(yīng)采用哪種安排方案?并求出最少總運(yùn)費(fèi)。

查看答案和解析>>

如圖,點(diǎn)A是△ABC和△ADE的公共頂點(diǎn),∠BAC+∠DAE=180°,ABk?AEACk?AD,點(diǎn)MDE的中點(diǎn),直線AM交直線BC于點(diǎn)N

⑴探究∠ANB與∠BAE的關(guān)系,并加以證明.

說明:如果你經(jīng)過反復(fù)探索沒解決問題,可以從下面①②中選取一個(gè)作為已知條件,再完成你的證明,選、俦冗x原題少得2分,選、诒冗x原題少得5分.

①     如圖18,k=1;②如圖19,ABAC

⑵若△ADE繞點(diǎn)A旋轉(zhuǎn),其他條件不變,則在旋轉(zhuǎn)的過程中⑴的結(jié)論是否發(fā)生變化?如果沒有發(fā)生變化,請(qǐng)寫出一個(gè)可以推廣的命題;如果有變化,請(qǐng)畫出變化后的一個(gè)圖形,并直接寫出變化后∠ANB與∠BAE的關(guān)系.

 


查看答案和解析>>

閱讀材料:如圖(1),在四邊形ABCD中,對(duì)角線ACBD,垂足為P

求證:S四邊形ABCD=AC?BD

證明:∵AC⊥BD,∴

∴S四邊形ABCD=SACD+ SABC=AC?PD+AC?PB=ACPD+PB)=AC?BD

解答問題:

(1)上述證明得到的性質(zhì)可敘述為:           

(2)已知:如圖(2),等腰梯形ABCD中,ADBC,對(duì)角線ACBD且相交于點(diǎn)P,AD=3cm,BC=7cm,利用上述的性質(zhì)求梯形的面積。

查看答案和解析>>

請(qǐng)看下面的問題:把分解因式分析:這個(gè)二項(xiàng)式既無公因式可提,也不能直接利用公式,怎么辦呢?19世紀(jì)的法國數(shù)學(xué)家蘇菲?熱門抓住了該式只有兩項(xiàng),而且屬于平方和的形式,要使用公式就必須添一項(xiàng),隨即將此項(xiàng)減去,即可得人們?yōu)榱思o(jì)念蘇菲?熱門給       出這一解法,就把它叫做“熱門定理”,請(qǐng)你依照蘇菲?熱門的做法,將下列各式因式分解.

(1)                        (2)

查看答案和解析>>


同步練習(xí)冊(cè)答案