由(I) AB平面PCB.又∵AB=BC.可求得BC=. 查看更多

 

題目列表(包括答案和解析)

如圖,四邊形PCBM是直角梯形,∠PCB=90°,PM∥BC,PM=1,BC=2.又AC=1,∠ACB=120°,AB⊥PC,直線AM與直線PC所成的角為60°.
(1)求證:PC⊥AC;
(2)求二面角M-AC-B的余弦值;
(3)求點(diǎn)B到平面MAC的距離.

查看答案和解析>>

精英家教網(wǎng)如圖,三棱錐P-ABC中,PC⊥平面ABC,PC=AC=2,AB=BC,D是PB上一點(diǎn),且CD⊥平面PAB.
( I) 求證:AB⊥平面PCB;
(II) 求異面直線AP與BC所成角的大。
(Ⅲ)求二面角C-PA-B的正弦值.

查看答案和解析>>

精英家教網(wǎng)如圖,平面PCBM⊥平面ABC,∠PCB=90°,PM∥BC,直線AM與直線PC所成的角為60°,又AC=1,BC=2PM=2,∠ACB=90°.
(Ⅰ)求證:AC⊥BM;
(Ⅱ)求二面角M-AB-C的大。
(Ⅲ)求多面體PMABC的體積.

查看答案和解析>>

如圖,PCBM是直角梯形,∠PCB=90°,PM∥BC,PM=1,BC=2,又AC=1,∠ACB=120°,AB⊥PC,直線AM與直線PC所成的角為60°.
(1)求證:平面PAC⊥平面ABC;
(2)求二面角M-AC-B的平面角的余弦值.

查看答案和解析>>

精英家教網(wǎng)如圖,PCBM是直角梯形,∠PCB=90°,PM∥BC,PM=1,BC=2,又AC=1,∠ACB=120°,AB⊥PC,直線AM與直線PC所成的角為60°.
(Ⅰ)求證:平面PAC⊥平面ABC;
(Ⅱ)求二面角M-AC-B的大小;
(Ⅲ)求三棱錐P-MAC的體積.

查看答案和解析>>


同步練習(xí)冊答案