C.R D.[1,+∞ 查看更多

 

題目列表(包括答案和解析)

定義在R上的函數(shù)y=f(x)的值域?yàn)椋踑,b],則y=f(x+1)的值域?yàn)?    )

A.[a,b]            B.[a+1,b+1]           C.[a-1,b-1]         D.無法確定

查看答案和解析>>

定義在R上的函數(shù)f(x)滿足f(x+2)=3f(x),當(dāng)x∈[0,2]時(shí),f(x)=x2-2x,則當(dāng)x∈[-4,-2]時(shí),f(x)的最小值是

A.-                  B.                   C.-                     D.-1

查看答案和解析>>

定義在R上的函數(shù)f(x)滿足f(x+2)=3f(x),當(dāng)x∈[0,2]時(shí),f(x)=x2-2x,則當(dāng)x∈[-4,-2]時(shí),f(x)的最小值是(    )

A.-1            B.           C.               D.

查看答案和解析>>

定義在R上的偶函數(shù)f(x)滿足對任意x∈R,都有f(x+8)=f(x)+f(4),且x∈[0,4]時(shí)f(x)=4-x,則f(2005)的值為

A.-1                  B.1              C.-2            D.0

 

查看答案和解析>>

全集U=R,A={-4<0},B={-4x+3≥0},那么

[  ]

A.(-∞,2)∪[3,+∞)
B.(-∞,-2]∪(1,+∞)
C.[2,3)
D.(-2,1)

查看答案和解析>>

難點(diǎn)磁場

(1)證明:先將f(x)變形:f(x)=log3[(x-2m)2+m+6ec8aac122bd4f6e],

當(dāng)mM時(shí),m>1,∴(xm)2+m+6ec8aac122bd4f6e>0恒成立,故f(x)的定義域?yàn)?b>R.

反之,若f(x)對所有實(shí)數(shù)x都有意義,則只須x2-4mx+4m2+m+6ec8aac122bd4f6e>0,令Δ<0,即16m2-4(4m2+m+6ec8aac122bd4f6e)<0,解得m>1,故mM.

(2)解析:設(shè)u=x2-4mx+4m2+m+6ec8aac122bd4f6e,∵y=log3u是增函數(shù),∴當(dāng)u最小時(shí),f(x)最小.?而u=(x-2m)2+m+6ec8aac122bd4f6e,顯然,當(dāng)x=m時(shí),u取最小值為m+6ec8aac122bd4f6e,此時(shí)f(2m)=log3(m+6ec8aac122bd4f6e)為最小值.

(3)證明:當(dāng)mM時(shí),m+6ec8aac122bd4f6e=(m-1)+ 6ec8aac122bd4f6e+1≥3,當(dāng)且僅當(dāng)m=2時(shí)等號成立.

∴l(xiāng)og3(m+6ec8aac122bd4f6e)≥log33=1.

殲滅難點(diǎn)訓(xùn)練

一、1.解析:∵m1=x2在(-∞,-6ec8aac122bd4f6e)上是減函數(shù),m2=6ec8aac122bd4f6e在(-∞,-6ec8aac122bd4f6e)上是減函數(shù),

y=x2+6ec8aac122bd4f6ex∈(-∞,-6ec8aac122bd4f6e)上為減函數(shù),

y=x2+6ec8aac122bd4f6e (x≤-6ec8aac122bd4f6e)的值域?yàn)椋郏?a >6ec8aac122bd4f6e,+∞6ec8aac122bd4f6e.

答案:B

2.解析:令6ec8aac122bd4f6e=t(t≥0),則x=6ec8aac122bd4f6e.

y=6ec8aac122bd4f6e+t=-6ec8aac122bd4f6e (t-1)2+1≤1

∴值域?yàn)?-∞,16ec8aac122bd4f6e.

答案:A

二、3.解析:t=6ec8aac122bd4f6e+16×(6ec8aac122bd4f6e)2/V=6ec8aac122bd4f6e+6ec8aac122bd4f6e≥26ec8aac122bd4f6e=8.

答案:8

4.解析:由韋達(dá)定理知:x1+x2=m,x1x2=6ec8aac122bd4f6e,∴x12+x22=(x1+x2)2-2x1x2=m26ec8aac122bd4f6e=(m6ec8aac122bd4f6e)26ec8aac122bd4f6e,又x1,x2為實(shí)根,∴Δ≥0.∴m≤-1或m≥2,y=(m6ec8aac122bd4f6e)26ec8aac122bd4f6e在區(qū)間(-∞,1)上是減函數(shù),在[2,+∞6ec8aac122bd4f6e上是增函數(shù)又拋物線y開口向上且以m=6ec8aac122bd4f6e為對稱軸.故m=1時(shí),

ymin=6ec8aac122bd4f6e.

答案:-1  6ec8aac122bd4f6e

三、5.解:(1)利潤y是指生產(chǎn)數(shù)量x的產(chǎn)品售出后的總收入R(x)與其總成本C(x)?之差,由題意,當(dāng)x≤5時(shí),產(chǎn)品能全部售出,當(dāng)x>5時(shí),只能銷售500臺,所以

y=6ec8aac122bd4f6e

(2)在0≤x≤5時(shí),y=-6ec8aac122bd4f6ex2+4.75x-0.5,當(dāng)x=-6ec8aac122bd4f6e=4.75(百臺)時(shí),ymax=10.78125(萬元),當(dāng)x>5(百臺)時(shí),y<12-0.25×5=10.75(萬元),?

所以當(dāng)生產(chǎn)475臺時(shí),利潤最大.?

(3)要使企業(yè)不虧本,即要求6ec8aac122bd4f6e

解得5≥x≥4.75-6ec8aac122bd4f6e≈0.1(百臺)或5<x<48(百臺)時(shí),即企業(yè)年產(chǎn)量在10臺到4800臺之間時(shí),企業(yè)不虧本.

6.解:(1)依題意(a2-1)x2+(a+1)x+1>0對一切xR恒成立,當(dāng)a2-1≠0時(shí),其充要條件是6ec8aac122bd4f6e,

a<-1或a>6ec8aac122bd4f6e.又a=-1時(shí),f(x)=0滿足題意,a=1時(shí)不合題意.故a≤-1或a>為6ec8aac122bd4f6e所求.

(2)依題意只要t=(a2-1)x2+(a+1)x+1能取到(0,+∞)上的任何值,則f(x)的值域?yàn)?b>R,故有6ec8aac122bd4f6e,解得1<a6ec8aac122bd4f6e,又當(dāng)a2-1=0即a=1時(shí),t=2x+1符合題意而a=-1時(shí)不合題意,∴1≤a6ec8aac122bd4f6e為所求.

7.解:設(shè)每周生產(chǎn)空調(diào)器、彩電、冰箱分別為x臺、y臺、z臺,由題意得:

x+y+z=360?                                                                                                   ①          

6ec8aac122bd4f6e                                                                                        ②x>0,y>0,z≥60.                                                                                              ③?

假定每周總產(chǎn)值為S千元,則S=4x+3y+2z,在限制條件①②③之下,為求目標(biāo)函數(shù)S的最大值,由①②消去z,得y=360-3x.                                                                                   ④

將④代入①得:x+(360-3x)+z=360,∴z=2x                                                             ⑤

z≥60,∴x≥30.                                                                                                    ⑥

再將④⑤代入S中,得S=4x+3(360-3x)+2?2x,即S=-x+1080.由條件⑥及上式知,當(dāng)x=30時(shí),產(chǎn)值S最大,最大值為S=-30+1080=1050(千元).得x=30分別代入④和⑤得y=360-90=270,z=2×30=60.

∴每周應(yīng)生產(chǎn)空調(diào)器30臺,彩電270臺,冰箱60臺,才能使產(chǎn)值最大,最大產(chǎn)值為1050千元.

6ec8aac122bd4f6e8.解:(1)如圖所示:設(shè)BC=a,CA=b,AB=c,則斜邊AB上的高h=6ec8aac122bd4f6e,

S1=πah+πbh=6ec8aac122bd4f6e,

f(x)=6ec8aac122bd4f6e                                                                                       ①

6ec8aac122bd4f6e

代入①消c,得f(x)=6ec8aac122bd4f6e.

在Rt△ABC中,有a=csinA,b=ccosA(0<A6ec8aac122bd4f6e6ec8aac122bd4f6e,則

x=6ec8aac122bd4f6e=sinA+cosA=6ec8aac122bd4f6esin(A+6ec8aac122bd4f6e).∴1<x6ec8aac122bd4f6e.

(2)f(x)=6ec8aac122bd4f6e +6,設(shè)t=x-1,則t∈(0, 6ec8aac122bd4f6e-1),y=2(t+6ec8aac122bd4f6e)+6在(0,6ec8aac122bd4f6e-16ec8aac122bd4f6e上是減函數(shù),∴當(dāng)x=(6ec8aac122bd4f6e-1)+1=6ec8aac122bd4f6e時(shí),f(x)的最小值為66ec8aac122bd4f6e+8.

 

 

 

 

 


同步練習(xí)冊答案