題目列表(包括答案和解析)
17.證明:假設(shè)f(x)至少有兩個零點。不妨設(shè)有兩個零點與,則f()=0,f()=0
所以f()=f()與已知f(x)是單調(diào)函數(shù)矛盾,所以假設(shè)錯誤,因此f(x)在其定義域上是單調(diào)函數(shù)證明f(x)至多有一個零點
一批產(chǎn)品共10件,其中7件正品,3件次品,每次從這批產(chǎn)品中任取一件,在下述三種情況下,分別求直至取得正品時所需次數(shù)X的概率分布。
(1)每次取出的產(chǎn)品不再放回去;
(2)每次取出的產(chǎn)品仍放回去;
(3)每次取出一件次品后,總是另取一件正品放回到這批產(chǎn)品中.
f′(x0) |
ex0 |
2 |
3 |
定義:已知函數(shù)f(x)與g(x),若存在一條直線y=kx +b,使得對公共定義域內(nèi)的任意實數(shù)均滿足g(x)≤f(x)≤kx+b恒成立,其中等號在公共點處成立,則稱直線y=kx +b為曲線f(x)與g(x)的“左同旁切線”.已知
(I)證明:直線y=x-l是f(x)與g(x)的“左同旁切線”;
(Ⅱ)設(shè)P(是函數(shù) f(x)圖象上任意兩點,且0<x1<x2,若存在實數(shù)x3>0,使得.請結(jié)合(I)中的結(jié)論證明:
|
難點磁場
(1)證明:令x=y=0,得f(0)=0
令y=-x,得f(0)=f(x)+f(-x),即f(-x)=-f(x)
∴f(x)是奇函數(shù)
(2)解:1°,任取實數(shù)x1、x2∈[-9,9]且x1<x2,這時,x2-x1>0,f(x1)-f(x2)=f[(x1-x2)+x2]-f(x2)=f(x1-x2)+f(x2)-f(x1)=-f(x2-x1)
因為x>0時f(x)<0,∴f(x1)-f(x2)>0
∴f(x)在[-9,9]上是減函數(shù)
故f(x)的最大值為f(-9),最小值為f(9).
而f(9)=f(3+3+3)=
∴f(x)在區(qū)間[-9,9]上的最大值為12,最小值為-12.
殲滅難點訓(xùn)練
一、1.解析:分類討論當(dāng)a>1時和當(dāng)0<a<1時.
答案:C
2.解析:用特值法,根據(jù)題意,可設(shè)f(x)=x,g(x)=|x|,又設(shè)a=2,b=1,
則f(a)=a,g(a)=|a|,f(b)=b,g(b)=|b|,f(a)-f(b)=f(2)-f(-1)=2+1=3.
g(b)-g(-a)=g(1)-g(-2)=1-2=-1.∴f(a)-f(-b)>g(1)-g(-2)=1-2=-1.
又f(b)-f(-a)=f(1)-f(-2)=1+2=3.
g(a)-g(-b)=g(2)-g(1)=2-1=1,∴f(b)-f(-a)=g(a)-g(-b).
即①與③成立.
答案:C
二、3.解析:設(shè)2x=t>0,則原方程可變?yōu)?i>t2+at+a+1=0 ①
三、4.解:(1)當(dāng)a=0時,函數(shù)f(-x)=(-x)2+|-x|+1=f(x),此時f(x)為偶函數(shù);當(dāng)a≠0時,f(a)=a2+1,f(-a)=a2+2|a|+1,f(-a)≠f(a),f(-a)≠-f(a).此時函數(shù)f(x)既不是奇函數(shù)也不是偶
函數(shù).
(2)①當(dāng)x≤a時,函數(shù)f(x)=x2-x+a+1=(x-)2+a+,若a≤,則函數(shù)f(x)在(-∞,a上單調(diào)遞減,從而,函數(shù)f(x)在(-∞,a上的最小值為f(a)=a2+1.
若a>,則函數(shù)f(x)在(-∞,a上的最小值為f()=+a,且f()≤f(a).?
②當(dāng)x≥a時,函數(shù)f(x)=x2+x-a+1=(x+)2-a+;當(dāng)a≤-時,則函數(shù)f(x)在[a,+∞上的最小值為f(-)=-a,且f(-)≤f(a).若a>-,?則函數(shù)f(x)在[a,+∞)上單調(diào)遞增,從而,函數(shù)f(x)在[a,+∞]上的最小值為f(a)=a2+1.
綜上,當(dāng)a≤-時,函數(shù)f(x)的最小值是-a,當(dāng)-<a≤時,函數(shù)f(x)的最小值是a2+1;當(dāng)a>時,函數(shù)f(x)的最小值是a+.
5.(1)證明:由 得f(x)的定義域為(-1,1),易判斷f(x)在(-1,1)內(nèi)是減函數(shù).
(2)證明:∵f(0)=,∴f--1()=0,即x=是方程f--1(x)=0的一個解.若方程f--1(x)=0還有另一個解x0≠,則f--1(x0)=0,由反函數(shù)的定義知f(0)=x0≠,與已知矛盾,故方程f--1(x)=0有惟一解.
(3)解:f[x(x-)]<,即f[x(x-)]<f(0).
6.證明:對f(x)+f(y)=f()中的x,y,令x=y=0,得f(0)=0,再令y=-x,又得f(x)+f(-x)=f(0)=0,即f(-x)=-f(x),∴f(x)在x∈(-1,1)上是奇函數(shù).設(shè)-1<x1<x2<0,則f(x1)-f(x2)=f(x1)+f(-x2)=f(),∵-1<x1<x2<0,∴x1-x2<0,1-x1x2>0.∴<0,于是由②知f()?>0,從而f(x1)-f(x2)>0,即f(x1)>f(x2),故f(x)在x∈(-1,0)上是單調(diào)遞減函數(shù).根據(jù)奇函數(shù)的圖象關(guān)于原點對稱,知f(x)在x∈(0,1)上仍是遞減函數(shù),且f(x)<0.
7.解:(1)因污水處理水池的長為x米,則寬為米,總造價y=400(2x+2×)+248××2+80×200=800(x+)+1600,由題設(shè)條件
解得12.5≤x≤16,即函數(shù)定義域為[12.5,16].
(2)先研究函數(shù)y=f(x)=800(x+)+16000在[12.5,16]上的單調(diào)性,對于任意的x1,x2∈[12.5,16],不妨設(shè)x1<x2,則f(x2)-f(x1)=800[(x2-x1)+324()]=800(x2-x1)(1-),∵12.5≤x1≤x2≤16.∴0<x1x2<162<324,∴>1,即1-<0.又x2-x1>0,∴f(x2)-f(x1)<0,即f(x2)<f(x1),故函數(shù)y=f(x)在[12.5,16]上是減函數(shù).∴當(dāng)x=16時,y取得最小值,此時,ymin=800(16+)+16000=45000(元),=12.5(米)?
綜上,當(dāng)污水處理池的長為
8.解:∵f(x)是奇函數(shù),且在(0,+∞)上是增函數(shù),∴f(x)在(-∞,0)上也是增函數(shù).
又f(1)=0,∴f(-1)=-f(1)=0,從而,當(dāng)f(x)<0時,有x<-1或0<x<1,
則集合N={m|f[g(θ)]<θ=={m|g(θ)<-1或0<g(θ)<1,
∴M∩N={m|g(θ)<-1.由g(θ)<-1,得cos2θ>m(cosθ-2)+2,θ∈[0,],令x=cosθ,x∈[0,1]得:x2>m(x-2)+2,x∈[0,1],令①:y1=x2,x∈[0,1]及②y2=m(m-2)+2,顯然①為拋物線一段,②是過(2,2)點的直線系,在同一坐標(biāo)系內(nèi)由x∈[0,1]得y1>y2.∴m>4-2,故M∩N={m|m>4-2}.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com