題目列表(包括答案和解析)
1 | bn-1 |
1 | bn-1 |
1 |
bn-1 |
1 |
c1 |
1 |
c2 |
1 |
cn |
n•2n+1 |
(n+1) |
設(shè)數(shù)列{an}的首項(xiàng)a1=1,前n項(xiàng)和Sn滿足關(guān)系式:3tSn-(2t+3)Sn-1=3t(t>0,n=2,3,4…).
(1)求證: 數(shù)列{an}是等比數(shù)列;
(2)設(shè)數(shù)列{an}的公比為f(t),作數(shù)列{bn},使b1=1,bn=f()(n=2,3,4…),求數(shù)列{bn}的通項(xiàng)bn;
(3)求和: b1b2-b2b3+b3b4-…+b2n-1b2n-b2nb2n+1.
難點(diǎn)磁場(chǎng)
解析:(1)由題意,當(dāng)n=1時(shí),有,S1=a1,
∴,解得a1=2.當(dāng)n=2時(shí),有,S2=a1+a2,將a1=2代入,整理得(a2-2)2=16,由a2>0,解得a2=6.當(dāng)n=3時(shí),有,S3=a1+a2+a3,將a1=2,a2=6代入,整理得(a3-2)2=64,由a3>0,解得a3=10.故該數(shù)列的前3項(xiàng)為2,6,10.
(2)解法一:由(1)猜想數(shù)列{an}.有通項(xiàng)公式an=4n-2.下面用數(shù)學(xué)歸納法證明{an}的通項(xiàng)公式是an=4n-2,(n∈N*).
①當(dāng)n=1時(shí),因?yàn)?×1-2=2,,又在(1)中已求出a1=2,所以上述結(jié)論成立.
②假設(shè)當(dāng)n=k時(shí),結(jié)論成立,即有ak=4k-2,由題意,有,將ak=4k-2.代入上式,解得2k=,得Sk=2k2,由題意,有,Sk+1=Sk+ak+1,將Sk=2k2代入得()2=2(ak+1+2k2),整理得ak+12-4ak+1+4-16k2=0,由ak+1>0,解得ak+1=2+4k,所以ak+1=2+4k=4(k+1)-2,即當(dāng)n=k+1時(shí),上述結(jié)論成立.根據(jù)①②,上述結(jié)論對(duì)所有的自然數(shù)n∈N*成立.
解法二:由題意知,(n∈N*).整理得,Sn=(an+2)2,由此得Sn+1=(an+1+2)2,∴an+1=Sn+1-Sn=[(an+1+2)2-(an+2)2].整理得(an+1+an)(an+1-an-4)=0,由題意知an+1+an≠0,∴an+1-an=4,即數(shù)列{an}為等差數(shù)列,其中a1=2,公差d=4.∴an=a1+(n-1)d=2+4(n-1),即通項(xiàng)公式為an=4n-2.
解法三:由已知得,(n∈N*)①,所以有②,由②式得,整理得Sn+1-2?+2-Sn=0,解得,由于數(shù)列{an}為正項(xiàng)數(shù)列,而,因而,即{Sn}是以為首項(xiàng),以為公差的等差數(shù)列.所以= +(n-1) =n,Sn=2n2,
殲滅難點(diǎn)訓(xùn)練
2.解析:由題意所有正三角形的邊長(zhǎng)構(gòu)成等比數(shù)列{an},可得an=,正三角形的內(nèi)切圓構(gòu)成等比數(shù)列{rn},可得rn=a,?
∴這些圓的周長(zhǎng)之和c=2π(r1+r2+…+rn)= a2,
二、3.解:(1)可解得,從而an=2n,有Sn=n2+n,
(2)Tn=2n+n-1.
(3)Tn-Sn=2n-n2-1,驗(yàn)證可知,n=1時(shí),T1=S1,n=2時(shí)T2<S2;n=3時(shí),T3<S3;n=4時(shí),T4<S4;n=5時(shí),T5>S5;n=6時(shí)T6>S6.猜想當(dāng)n≥5時(shí),Tn>Sn,即2n>n2+1
可用數(shù)學(xué)歸納法證明(略).
4.解:(1)由an+2=2an+1-anan+2-an+1=an+1-an可知{an}成等差數(shù)列,?
(2)由an=10-2n≥0可得n≤5,當(dāng)n≤5時(shí),Sn=-n2+9n,當(dāng)n>5時(shí),Sn=n2-9n+40,故Sn=
;要使Tn>總成立,需<T1=成立,即m<8且m∈Z,故適合條件的m的最大值為7.
5.解:(1)由已知Sn+1=(m+1)-man+1?①,Sn=(m+1)-man②,由①-②,得an+1=man-man+1,即(m+1)an+1=man對(duì)任意正整數(shù)n都成立.
∵m為常數(shù),且m<-1
(2)當(dāng)n=1時(shí),a1=m+1-ma1,∴a1=1,從而b1=.
由(1)知q=f(m)=,∴bn=f(bn-1)= (n∈N*,且n≥2)
∴,即,∴{}為等差數(shù)列.∴=3+(n-1)=n+2,
6.解:(1)設(shè)數(shù)列{bn}的公差為d,由題意得:解得b1=1,d=3,
∴bn=3n-2.
(2)由bn=3n-2,知Sn=loga(1+1)+loga(1+)+…+loga(1+)
=loga[(1+1)(1+)…(1+)],logabn+1=loga.
因此要比較Sn與logabn+1的大小,可先比較(1+1)(1+)…(1+)與的大小,
若①式成立,則由對(duì)數(shù)函數(shù)性質(zhì)可判定:
當(dāng)a>1時(shí),Sn>logabn+1, ②
當(dāng)0<a<1時(shí),Sn<logabn+1, ③
下面用數(shù)學(xué)歸納法證明①式.
(?)當(dāng)n=1時(shí),已驗(yàn)證①式成立.
(?)假設(shè)當(dāng)n=k時(shí)(k≥1),①式成立,即:
這就是說(shuō)①式當(dāng)n=k+1時(shí)也成立.
由(?)(?)可知①式對(duì)任何正整數(shù)n都成立.
由此證得:
當(dāng)a>1時(shí),Sn>logabn+1;當(dāng)0<a<1時(shí),Sn<logabn+1?.
7.解:(1)由S1=a1=1,S2=1+a2,得3t(1+a2)-(2t+3)=3t.
又3tSn-(2t+3)Sn-1=3t, ①
3tSn-1-(2t+3)Sn-2=3t ②
①-②得3tan-(2t+3)an-1=0.
∴,n=2,3,4…,所以{an}是一個(gè)首項(xiàng)為1公比為的等比數(shù)列;
可見(jiàn){bn}是一個(gè)首項(xiàng)為1,公差為的等差數(shù)列.
(3)由bn=,可知{b2n-1}和{b2n}是首項(xiàng)分別為1和,公差均為的等差數(shù)列,于是b2n=,
∴b1b2-b2b3+b3b4-b4b5+…+b2n-1b2n-b2nb2n+1?
=b2(b1-b3)+b4(b3-b5)+…+b2n(b2n-1-b2n+1)
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com