⑵利用點在橢圓上.所以1是方程(※)的一個根.通過因式分解求出.從而合理地避免了必須使用韋達定理解決問題.而又使直線與圓錐曲線的位置關系這一熱點得到考查.不難看出命題者煞費苦心!但本題中將(※)左邊因式分解也有一定難度.故點的位置選取還值得斟酌!類似的題目還有:2009年名校沖刺卷―理科數(shù)學(二)的第20題.2009年名校沖刺卷―理科數(shù)學(三)的第21題.寧波市2008學年第一學期八校聯(lián)考高三數(shù)學(理)第20題和浙江省紹興市2009年高三數(shù)學(理)教學調(diào)測試卷第21題等等.不難看出.這極有可能是新課程高考的一個亮點! 查看更多

 

題目列表(包括答案和解析)

(2009全國卷Ⅱ文)(本小題滿分12分)

已知橢圓C:                    的離心率為      ,過右焦點F的直線l與C相交于A、B

 
            

兩點,當l的斜率為1時,坐標原點O到l的距離為

 

(Ⅰ)求a,b的值;

(Ⅱ)C上是否存在點P,使得當l繞F轉(zhuǎn)到某一位置時,有成立?

若存在,求出所有的P的坐標與l的方程;若不存在,說明理由。

解析:本題考查解析幾何與平面向量知識綜合運用能力,第一問直接運用點到直線的距離公式以及橢圓有關關系式計算,第二問利用向量坐標關系及方程的思想,借助根與系數(shù)關系解決問題,注意特殊情況的處理。

查看答案和解析>>

(2009全國卷Ⅱ文)(本小題滿分12分)

已知橢圓C:                    的離心率為      ,過右焦點F的直線l與C相交于A、B

 
            

兩點,當l的斜率為1時,坐標原點O到l的距離為

 

(Ⅰ)求a,b的值;

(Ⅱ)C上是否存在點P,使得當l繞F轉(zhuǎn)到某一位置時,有成立?

若存在,求出所有的P的坐標與l的方程;若不存在,說明理由。

解析:本題考查解析幾何與平面向量知識綜合運用能力,第一問直接運用點到直線的距離公式以及橢圓有關關系式計算,第二問利用向量坐標關系及方程的思想,借助根與系數(shù)關系解決問題,注意特殊情況的處理。

查看答案和解析>>

已知中心在原點,焦點在軸上的橢圓的離心率為,且經(jīng)過點.

(Ⅰ)求橢圓的方程;

(Ⅱ)是否存過點(2,1)的直線與橢圓相交于不同的兩點,滿足?若存在,求出直線的方程;若不存在,請說明理由.

【解析】第一問利用設橢圓的方程為,由題意得

解得

第二問若存在直線滿足條件的方程為,代入橢圓的方程得

因為直線與橢圓相交于不同的兩點,設兩點的坐標分別為,

所以

所以.解得。

解:⑴設橢圓的方程為,由題意得

解得,故橢圓的方程為.……………………4分

⑵若存在直線滿足條件的方程為,代入橢圓的方程得

因為直線與橢圓相交于不同的兩點,設兩點的坐標分別為,

所以

所以

,

因為,即,

所以

所以,解得

因為A,B為不同的兩點,所以k=1/2.

于是存在直線L1滿足條件,其方程為y=1/2x

 

查看答案和解析>>


同步練習冊答案