重視對數(shù)學(xué)思想.方法進(jìn)行歸納提煉.達(dá)到優(yōu)化解題思維.簡化解題過程.(1)方程思想解析幾何的題目大部分都以方程形式給定直線和圓錐曲線.因此把直線與圓錐曲線相交的弦長問題利用韋達(dá)定理進(jìn)行整體處理.就簡化解題運(yùn)算量.(2)用好函數(shù)思想方法對于圓錐曲線上的一些動(dòng)點(diǎn).在變化過程中會(huì)引入一些相互聯(lián)系.相互制約的量.從而使一些線的長度及a,b,c,e之間構(gòu)成函數(shù)關(guān)系.函數(shù)思想在處理這類問題時(shí)就很有效.(3)掌握坐標(biāo)法坐標(biāo)法是解決有關(guān)圓錐曲線問題的基本方法.近幾年都考查了坐標(biāo)法.因此要加強(qiáng)坐標(biāo)法的訓(xùn)練. 查看更多

 

題目列表(包括答案和解析)

對于給定的實(shí)數(shù),按下列方法操作一次產(chǎn)生一個(gè)新的實(shí)數(shù):由甲、乙同時(shí)各擲一顆質(zhì)地均勻的骰子(一種各面上分別標(biāo)有1,2,3,4,5,6個(gè)點(diǎn)的正方體玩具),記出現(xiàn)向上的點(diǎn)數(shù)分別為,如果是偶數(shù),則把乘以2后再減去2;如果是奇數(shù),則把除以2后再加上2,這樣就可得到一個(gè)新的實(shí)數(shù),對仍按上述方法進(jìn)行一次操作,又得到一個(gè)新的實(shí)數(shù).當(dāng)時(shí),甲獲勝,否則乙獲勝.若甲獲勝的概率為,則的值不可能是

A.0                B.2                C.3                D.4

 

查看答案和解析>>

甲、乙兩位同學(xué)玩游戲,對于給定的實(shí)數(shù),按下列方法操作一次產(chǎn)生一個(gè)新的實(shí)數(shù):由甲、乙同時(shí)各拋一枚均勻的硬幣,如果出現(xiàn)兩個(gè)正面朝上或兩個(gè)反面朝上,則把乘以2后再減去12;如果出現(xiàn)一個(gè)正面朝上,一個(gè)反面朝上,則把除以2后再加上12,這樣就可得到一個(gè)新的實(shí)數(shù),對仍按上述方法進(jìn)行一次操作,又得到一個(gè)新的實(shí)數(shù),當(dāng)時(shí),甲獲勝,否則乙獲勝。若甲獲勝的概率為,則的取值范圍是_________.

 

查看答案和解析>>

(2007•武漢模擬)在一個(gè)單位中普查某種疾病,600個(gè)人去驗(yàn)血,對這些人的血的化驗(yàn)可以用兩種方法進(jìn)行:
方法一:每個(gè)人的血分別化驗(yàn),這時(shí)需要化驗(yàn)600次;
方法二:把每個(gè)人的血樣分成兩份,取k(k≥2)個(gè)人的血樣各一份混在一起進(jìn)行化驗(yàn),如果結(jié)果是陰性的,那么對這k個(gè)人只作一次檢驗(yàn)就夠了;如果結(jié)果陽性的,那么再對這k個(gè)人的另一份血樣逐個(gè)化驗(yàn),這時(shí)對這k個(gè)人共需作k+1次化驗(yàn).
假定對所有的人來說,化驗(yàn)結(jié)果是陽性的概率是0.1,而且這些人的反應(yīng)是獨(dú)立的.將每個(gè)人的血樣所需的檢驗(yàn)次數(shù)作為隨機(jī)變量ξ.
(1)寫出方法二中隨機(jī)變量ξ的分布列,并求數(shù)學(xué)期望Eξ(用k表示);
(2)現(xiàn)有方法一和方法二中k分別取3、4、5共四種方案,請判斷哪種方案最好,并說明理由.(參考數(shù)據(jù):取0.93=0.729,0.94=0.656,0.95=0.591)

查看答案和解析>>

組委會(huì)計(jì)劃對參加某項(xiàng)田徑比賽的12名運(yùn)動(dòng)員的血樣進(jìn)行突擊檢驗(yàn),檢查是否含有興奮劑HGH成分.采用如下檢測方法:將所有待檢運(yùn)動(dòng)員分成4個(gè)小組,每組3個(gè)人,再把每個(gè)人的血樣分成兩份,化驗(yàn)室將每個(gè)小組內(nèi)的3個(gè)人的血樣各一份混合在一起進(jìn)行化驗(yàn),若結(jié)果中不含HGH成分,那么該組的3個(gè)人只需化驗(yàn)這一次就算合格;如果結(jié)果中含HGH成分,那么需對該組進(jìn)行再次檢驗(yàn),即需要把這3個(gè)人的另一份血樣逐個(gè)進(jìn)行化驗(yàn),才能最終確定是否檢驗(yàn)合格,這時(shí),對這3個(gè)人一共進(jìn)行了4次化驗(yàn),假定對所有人來說,化驗(yàn)結(jié)果中含有HGH成分的概率均為
110

(Ⅰ)求一個(gè)小組只需經(jīng)過一次檢驗(yàn)就合格的概率;
(Ⅱ)設(shè)一個(gè)小組檢驗(yàn)次數(shù)為隨機(jī)變量ξ,求ξ的分布列及數(shù)學(xué)期望;
(Ⅲ)至少有兩個(gè)小組只需經(jīng)過一次檢驗(yàn)就合格的概率.(精確到0.01,參考數(shù)據(jù):0.2713≈0.020,0.2714≈0.005,0.7292≈0.500)

查看答案和解析>>

難點(diǎn)磁場

解:由方程組6ec8aac122bd4f6e消去y,整理得(a2+b2)x2-2a2x+a2(1-b2)=0                      ①

則橢圓與直線l在第一象限內(nèi)有兩個(gè)不同的交點(diǎn)的充要條件是方程①在區(qū)間(0,1)內(nèi)有兩相異實(shí)根,令f(x)=(a2+b2)x2-2a2x+a2(1-b2),則有

6ec8aac122bd4f6e

同時(shí)滿足上述四個(gè)條件的點(diǎn)P(a,b)的存在區(qū)域?yàn)橄聢D所示的陰影部分:

6ec8aac122bd4f6e

殲滅難點(diǎn)訓(xùn)練

一、1.解析:由題意知A(1,1),B(m,6ec8aac122bd4f6e),C(4,2).

直線AC所在方程為x-3y+2=0,

點(diǎn)B到該直線的距離為d=6ec8aac122bd4f6e.

6ec8aac122bd4f6e

m∈(1,4),∴當(dāng)6ec8aac122bd4f6e時(shí),SABC有最大值,此時(shí)m=6ec8aac122bd4f6e.

答案:B

2.解析:考慮式子的幾何意義,轉(zhuǎn)化為求圓x2+y2=2上的點(diǎn)與雙曲線xy=9上的點(diǎn)的距離的最小值.

答案:C

二、3.解析:設(shè)橢圓方程為6ec8aac122bd4f6e=1(ab>0),以OA為直徑的圓:x2ax+y2=0,兩式聯(lián)立消y6ec8aac122bd4f6ex2ax+b2=0.即e2x2ax+b2=0,該方程有一解x2,一解為a,由韋達(dá)定理x2=6ec8aac122bd4f6ea,0<x2a,即0<6ec8aac122bd4f6eaa6ec8aac122bd4f6ee<1.

答案:6ec8aac122bd4f6ee<1

4.解析:由題意可設(shè)拋物線方程為x2=-ay,當(dāng)x=6ec8aac122bd4f6e時(shí),y=-6ec8aac122bd4f6e;當(dāng)x=0.8時(shí),y=-6ec8aac122bd4f6e.由題意知6ec8aac122bd4f6e≥3,即a2-12a-2.56≥0.解得a的最小整數(shù)為13.

答案:13

5.解析:設(shè)P(t,t2-1),Q(s,s2-1)

BPPQ,∴6ec8aac122bd4f6e=-1,

t2+(s-1)ts+1=0

tR,∴必須有Δ=(s-1)2+4(s-1)≥0.即s2+2s-3≥0,

解得s≤-3或s≥1.

答案:(-∞,-36ec8aac122bd4f6e6ec8aac122bd4f6e1,+∞)

三、6.解:設(shè)A(x1,y1),B(x2,y2).

6ec8aac122bd4f6e,得(1-k2x2+2kx-2=0,

又∵直線AB與雙曲線左支交于AB兩點(diǎn),

故有6ec8aac122bd4f6e

解得-6ec8aac122bd4f6ek<-1

6ec8aac122bd4f6e

7.解:由拋物線y2=4x,得焦點(diǎn)F(1,0),準(zhǔn)線lx=-1.

(1)設(shè)P(x,y),則B(2x-1,2y),橢圓中心O′,則|FO′|∶|BF|=e,又設(shè)點(diǎn)Bl的距離為d,則|BF|∶d=e,∴|FO′|∶|BF|=|BF|∶d,即(2x-2)2+(2y)2=2x(2x-2),化簡得P點(diǎn)軌跡方程為y2=x-1(x>1).

(2)設(shè)Q(x,y),則|MQ|=6ec8aac122bd4f6e6ec8aac122bd4f6e?

(?)當(dāng)m6ec8aac122bd4f6e≤1,即m6ec8aac122bd4f6e時(shí),函數(shù)t=[x-(m6ec8aac122bd4f6e)2]+m6ec8aac122bd4f6e在(1,+∞)上遞增,故t無最小值,亦即|MQ|無最小值.

(?)當(dāng)m6ec8aac122bd4f6e>1,即m6ec8aac122bd4f6e時(shí),函數(shù)t=[x2-(m6ec8aac122bd4f6e)2]+m6ec8aac122bd4f6ex=m6ec8aac122bd4f6e處有最小值m6ec8aac122bd4f6e,∴|MQ|min=6ec8aac122bd4f6e.

8.解:(1)以ABOD所在直線分別為x軸、y軸,O為原點(diǎn),建立平面直角坐標(biāo)系,?

∵|PA|+|PB|=|QA|+|QB|=26ec8aac122bd4f6e>|AB|=4.

∴曲線C為以原點(diǎn)為中心,A、B為焦點(diǎn)的橢圓.

設(shè)其長半軸為a,短半軸為b,半焦距為c,則2a=26ec8aac122bd4f6e,∴a=6ec8aac122bd4f6e,c=2,b=1.

∴曲線C的方程為6ec8aac122bd4f6e+y2=1.

(2)設(shè)直線l的方程為y=kx+2,

代入6ec8aac122bd4f6e+y2=1,得(1+5k2)x2+20kx+15=0.

Δ=(20k)2-4×15(1+5k2)>0,得k26ec8aac122bd4f6e.由圖可知6ec8aac122bd4f6e=λ

6ec8aac122bd4f6e

由韋達(dá)定理得6ec8aac122bd4f6e

x1=λx2代入得

6ec8aac122bd4f6e

兩式相除得6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e                             ①

6ec8aac122bd4f6eMD、N中間,∴λ<1                                                             ②

又∵當(dāng)k不存在時(shí),顯然λ=6ec8aac122bd4f6e (此時(shí)直線ly軸重合).

 

 


同步練習(xí)冊答案