②“直線l垂直于平面內(nèi)所有直線 的充要條件是:l⊥平面, 查看更多

 

題目列表(包括答案和解析)

5、給出下面四個(gè)命題:①“直線a、b為異面直線”的充分非必要條件是:直線a、b不相交;②“直線l垂直于平面α內(nèi)所有直線”的充要條件是:l⊥平面α;③“直線a⊥b”的充分非必要條件是“a垂直于b在平面α內(nèi)的射影”;④“直線α∥平面β”的必要非充分條件是“直線a至少平行于平面β內(nèi)的一條直線”.其中正確命題的個(gè)數(shù)是( 。

查看答案和解析>>

設(shè)α和β為不重合的兩個(gè)平面,給出下列命題:
①若α內(nèi)的兩條相交直線分別平行于β內(nèi)的兩條直線,則α平行于β;
②若α外一條直線l與α內(nèi)的一條直線平行,則l和α平行;
③設(shè)α和β相交于直線l,若α內(nèi)有一條直線垂直于l,則α和β垂直;
④直線l與α垂直的充分必要條件是l與α內(nèi)的兩條直線垂直.
上面命題中,其中所有真命題 的序號(hào)是( 。

查看答案和解析>>

設(shè)αβ為兩個(gè)不重合的平面,給出下列四個(gè)命題:

α內(nèi)的兩條相交直線分別平行于β內(nèi)的兩條直線,則α平行于βα外一條直線lα內(nèi)的一條直線平行,則lα平行;設(shè)αβ相交于直線l,若α內(nèi)有一條直線垂直于l,則αβ垂直;直線lα垂直的充分必要條件是lα內(nèi)的兩條直線垂直.其中為真命題的是________(寫(xiě)出所有真命題的序號(hào))

 

查看答案和解析>>

設(shè)αβ為不重合的兩個(gè)平面,給出下列命題:

α內(nèi)的兩條相交直線分別平行于β內(nèi)的兩條直線,則α平行于β

α外一條直線lα內(nèi)的一條直線平行,則lα平行;

設(shè)αβ相交于直線l,若α內(nèi)有一條直線垂直于l,則αβ垂直;

直線lα垂直的充分必要條件是lα內(nèi)的兩條直線垂直.

上面命題中,真命題的序號(hào)______(寫(xiě)出所有真命題的序號(hào))

 

查看答案和解析>>

給出下面四個(gè)命題:①“直線a、b為異面直線”的充分非必要條件是:直線a、b不相交;②“直線l垂直于平面α內(nèi)所有直線”的充要條件是:l⊥平面α;③“直線a⊥b”的充分非必要條件是“a垂直于b在平面α內(nèi)的射影”;④“直線α平面β”的必要非充分條件是“直線a至少平行于平面β內(nèi)的一條直線”.其中正確命題的個(gè)數(shù)是( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

一、          填空題:

 1、   2、   3、128  4、  5、64     6、 

 7、    8、    9、-4  10、15  11、

 12、(1)(2)(5)

二、選擇題:

 13、D      14、  C    15、  B    16、 C

 

17、解:以A為原點(diǎn),以AB、AD、AP所在直線分別軸,

建立空間直角坐標(biāo)系。 -----2分

則  C(2,1,0) N(1,0,1)  =(-1,-1,1)---4分

        D(0,2,0) M(1,,1) =(1,-,1)---6分

設(shè)的夾角為,

  ----8分  

  ---10分

  異面直線所成的角為  -----12分

18、解:延長(zhǎng),作于D,------4分

設(shè),則

 ------8分

解得.------10分

故船繼續(xù)朝原方向前進(jìn)有觸礁的危險(xiǎn).-----12

 

19、解: (1)因?yàn)閒(x+y)=f(x)+f(y),

令x=y=0,代入①式,-----2分

得f(0+0)=f(0)+f(0),即 f(0)=0  --------4分

(2)令y=-x,代入①式,得 f(x-x)=f(x)+f(-x),又f(0)=0,

則有0=f(x)+f(-x).------6分

即f(-x)=-f(x)對(duì)任意x∈R成立,

所以f(x)是奇函數(shù).......8分

(3)    f(3)=log3>0,即f(3)>f(0),

又f(x)在R上是單調(diào)函數(shù),所以f(x)在R上是增函數(shù),----10分

又由(1)f(x)是奇函數(shù).

  f(k?3)<-f(3-9-2)=f(-3+9+2),

k?3<-3+9+2,

------12

 ------------14分

20、解:(1)為等差數(shù)列,∵,又,

,是方程的兩個(gè)根

又公差,∴,∴      --------     2分

   ∴   ∴     -----------4分

(2)由(1)知,         -----------5分

,,         ------------7分

是等差數(shù)列,∴,∴    ----------8分

舍去)                         ------------9分

(3)由(2)得                    -------------11分

  ,時(shí)取等號(hào) ------- 13分

,時(shí)取等號(hào)15分

(1)、(2)式中等號(hào)不可能同時(shí)取到,所以   -----------16分

 

 

 

21、解:(1)橢圓相似.   -----2分

因?yàn)?sub>的特征三角形是腰長(zhǎng)為4,底邊長(zhǎng)為的等腰三角形,

而橢圓的特征三角形是腰長(zhǎng)為2,

底邊長(zhǎng)為的等腰三角形,

因此兩個(gè)等腰三角形相似,且相似比為.                                                                                                              --- 6分

(2)橢圓的方程為:.        --------8分

假定存在,則設(shè)所在直線為,中點(diǎn)為.

.       -------10分

所以.

中點(diǎn)在直線上,所以有.        ----12分

.

.     -------14分

(3)橢圓的方程為:.        

兩個(gè)相似橢圓之間的性質(zhì)有:                          寫(xiě)出一個(gè)給2分

①     兩個(gè)相似橢圓的面積之比為相似比的平方;

②     分別以兩個(gè)相似橢圓的頂點(diǎn)為頂點(diǎn)的四邊形也相似,相似比即為橢圓的相似比;

③     兩個(gè)相似橢圓被同一條直線所截得的線段中點(diǎn)重合;

過(guò)原點(diǎn)的直線截相似橢圓所得線段長(zhǎng)度之比恰為橢圓的相似比.    ----20分

 

 

 

 


同步練習(xí)冊(cè)答案