題目列表(包括答案和解析)
已知橢圓的左、右焦點(diǎn)分別為,離心率為,P是橢圓上一點(diǎn),且面積的最大值等于2.
(1)求橢圓的方程;
(2)過(guò)點(diǎn)M(0,2)作直線(xiàn)與直線(xiàn)垂直,試判斷直線(xiàn)與橢圓的位置關(guān)系5
(3)直線(xiàn)y=2上是否存在點(diǎn)Q,使得從該點(diǎn)向橢圓所引的兩條切線(xiàn)相互垂直?若存在,求點(diǎn)Q的坐標(biāo);若不存在,說(shuō)明理由。
已知橢圓:的右焦點(diǎn)在圓上,直線(xiàn)交橢圓于、兩點(diǎn).
(1)求橢圓的方程;
(2)若(為坐標(biāo)原點(diǎn)),求的值;
(3)設(shè)點(diǎn)關(guān)于軸的對(duì)稱(chēng)點(diǎn)為(與不重合),且直線(xiàn)與軸交于點(diǎn),試問(wèn)的面積是否存在最大值?若存在,求出這個(gè)最大值;若不存在,請(qǐng)說(shuō)明理由.
已知橢圓的離心率為,直線(xiàn):與以原點(diǎn)為圓心、以橢圓的短半軸長(zhǎng)為半徑的圓相切.
(1)求橢圓的方程;
(2)設(shè)橢圓的左焦點(diǎn)為,右焦點(diǎn),直線(xiàn)過(guò)點(diǎn)且垂直于橢圓的長(zhǎng)軸,動(dòng)直線(xiàn)垂
直于點(diǎn),線(xiàn)段垂直平分線(xiàn)交于點(diǎn),求點(diǎn)的軌跡的方程;
(3)當(dāng)P不在軸上時(shí),在曲線(xiàn)上是否存在兩個(gè)不同點(diǎn)C、D關(guān)于對(duì)稱(chēng),若存在,
求出的斜率范圍,若不存在,說(shuō)明理由。
(18分)已知橢圓C:,在曲線(xiàn)C上是否存在不同兩點(diǎn)A、B關(guān)于直線(xiàn)(m為常數(shù))對(duì)稱(chēng)?若存在,求出滿(mǎn)足的條件;若不存在,說(shuō)明理由。
已知橢圓的左、右焦點(diǎn)分別為,離心率為,P是橢圓上一點(diǎn),且面積的最大值等于2.
(1)求橢圓的方程;
(2)過(guò)點(diǎn)M(0,2)作直線(xiàn)與直線(xiàn)垂直,試判斷直線(xiàn)與橢圓的位置關(guān)系5
(3)直線(xiàn)y=2上是否存在點(diǎn)Q,使得從該點(diǎn)向橢圓所引的兩條切線(xiàn)相互垂直?若存在,求點(diǎn)Q的坐標(biāo);若不存在,說(shuō)明理由。
一、 填空題:
1、 2、 3、128 4、 5、64 6、
7、 8、 9、-4 10、15 11、
12、(1)(2)(5)
二、選擇題:
13、D 14、 C 15、 B 16、 C
17、解:以A為原點(diǎn),以AB、AD、AP所在直線(xiàn)分別軸,
建立空間直角坐標(biāo)系。 -----2分
則 C(2,1,0) N(1,0,1) =(-1,-1,1)---4分
D(0,2,0) M(1,,1) =(1,-,1)---6分
設(shè)與的夾角為,
----8分
---10分
異面直線(xiàn)與所成的角為 -----12分
18、解:延長(zhǎng),作交于D,------4分
設(shè),則
------8分
解得.------10分
故船繼續(xù)朝原方向前進(jìn)有觸礁的危險(xiǎn).-----12
19、解: (1)因?yàn)閒(x+y)=f(x)+f(y),
令x=y=0,代入①式,-----2分
得f(0+0)=f(0)+f(0),即 f(0)=0 --------4分
(2)令y=-x,代入①式,得 f(x-x)=f(x)+f(-x),又f(0)=0,
則有0=f(x)+f(-x).------6分
即f(-x)=-f(x)對(duì)任意x∈R成立,
所以f(x)是奇函數(shù).......8分
(3) f(3)=log3>0,即f(3)>f(0),
又f(x)在R上是單調(diào)函數(shù),所以f(x)在R上是增函數(shù),----10分
又由(1)f(x)是奇函數(shù).
f(k?3)<-f(3-9-2)=f(-3+9+2),
k?3<-3+9+2,
得------12分
------------14分
20、解:(1)為等差數(shù)列,∵,又,
∴ ,是方程的兩個(gè)根
又公差,∴,∴, -------- 2分
∴ ∴ ∴ -----------4分
(2)由(1)知, -----------5分
∴
∴,, ------------7分
∵是等差數(shù)列,∴,∴ ----------8分
∴(舍去) ------------9分
(3)由(2)得 -------------11分
,時(shí)取等號(hào) ------- 13分
,時(shí)取等號(hào)15分
(1)、(2)式中等號(hào)不可能同時(shí)取到,所以 -----------16分
21、解:(1)橢圓與相似. -----2分
因?yàn)?sub>的特征三角形是腰長(zhǎng)為4,底邊長(zhǎng)為的等腰三角形,
而橢圓的特征三角形是腰長(zhǎng)為2,
底邊長(zhǎng)為的等腰三角形,
因此兩個(gè)等腰三角形相似,且相似比為. --- 6分
(2)橢圓的方程為:. --------8分
假定存在,則設(shè)、所在直線(xiàn)為,中點(diǎn)為.
則. -------10分
所以.
中點(diǎn)在直線(xiàn)上,所以有. ----12分
.
. -------14分
(3)橢圓的方程為:.
兩個(gè)相似橢圓之間的性質(zhì)有: 寫(xiě)出一個(gè)給2分
① 兩個(gè)相似橢圓的面積之比為相似比的平方;
② 分別以?xún)蓚(gè)相似橢圓的頂點(diǎn)為頂點(diǎn)的四邊形也相似,相似比即為橢圓的相似比;
③ 兩個(gè)相似橢圓被同一條直線(xiàn)所截得的線(xiàn)段中點(diǎn)重合;
過(guò)原點(diǎn)的直線(xiàn)截相似橢圓所得線(xiàn)段長(zhǎng)度之比恰為橢圓的相似比. ----20分
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com