若存在.則求出函數(shù)的解析式. 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)處切線斜率為-1.

(I)      求的解析式;

(Ⅱ)設(shè)函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012051816291835932426/SYS201205181630244218657625_ST.files/image005.png">,若存在區(qū)間,使得上的值域也是,則稱區(qū)間為函數(shù)的“保值區(qū)間”

(ⅰ)證明:當(dāng)時(shí),函數(shù)不存在“保值區(qū)間”;

(ⅱ)函數(shù)是否存在“保值區(qū)間”?若存在,寫出一個(gè)“保值區(qū)間”(不必證明);若不存在,說(shuō)明理由.

 

查看答案和解析>>

 

    設(shè)二次函數(shù),函數(shù),且有,

    (1)求函數(shù)的解析式;

    (2)是否存在實(shí)數(shù)k和p,使得成立,若存在,求出k和p的值;若不存在,說(shuō)明理由。

 

 

 

    請(qǐng)考生在第22、23、24三題中任選一題作答,如果多做,則按所做的第一題記分。

 

查看答案和解析>>

已知函數(shù)處切線斜率為-1.
(I)     求的解析式;
(Ⅱ)設(shè)函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823183439244210.gif" style="vertical-align:middle;" />,若存在區(qū)間,使得上的值域也是,則稱區(qū)間為函數(shù)的“保值區(qū)間”
(ⅰ)證明:當(dāng)時(shí),函數(shù)不存在“保值區(qū)間”;
(ⅱ)函數(shù)是否存在“保值區(qū)間”?若存在,寫出一個(gè)“保值區(qū)間”(不必證明);若不存在,說(shuō)明理由.

查看答案和解析>>

已知函數(shù)處切線斜率為-1.

(I)求的解析式;

(Ⅱ)設(shè)函數(shù)的定義域?yàn)?sub>,若存在區(qū)間,使得上的值域也是,則稱區(qū)間為函數(shù)的“保值區(qū)間”

(。┳C明:當(dāng)時(shí),函數(shù)不存在“保值區(qū)間”;

(ⅱ)函數(shù)是否存在“保值區(qū)間”?若存在,寫出一個(gè)“保值區(qū)間”(不必證明);若不

存在,說(shuō)明理由.

查看答案和解析>>

函數(shù),其圖象在處的切線方程為

(Ⅰ)求函數(shù)的解析式;

(Ⅱ)若函數(shù)的圖象與的圖象有三個(gè)不同的交點(diǎn),求實(shí)數(shù)的取值范圍;

(Ⅲ)是否存在點(diǎn)P,使得過點(diǎn)P的直線若能與曲線圍成兩個(gè)封閉圖形,則這兩個(gè)封閉圖形的面積相等?若存在,求出P點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.

 

查看答案和解析>>


同步練習(xí)冊(cè)答案