題目列表(包括答案和解析)
(本小題滿分14分)
在△OAB的邊OA,OB上分別有一點(diǎn)P,Q,已知:=1:2, :=3:2,連結(jié)AQ,BP,設(shè)它們交于點(diǎn)R,若=a,=b.
(1)用a與 b表示;
(2)過(guò)R作RH⊥AB,垂足為H,若| a|=1, | b|=2, a與 b的夾角的取值范圍.
(本小題滿分14分)已知A(8,0),B、C兩點(diǎn)分別在y軸和x軸上運(yùn)動(dòng),并且滿足。
(1)求動(dòng)點(diǎn)P的軌跡方程。
(2)若過(guò)點(diǎn)A的直線L與動(dòng)點(diǎn)P的軌跡交于M、N兩點(diǎn),且
其中Q(-1,0),求直線L的方程.
(本小題滿分14分)
已知函數(shù),a>0,w.w.w.k.s.5.u.c.o.m
(Ⅰ)討論的單調(diào)性;
(Ⅱ)設(shè)a=3,求在區(qū)間{1,}上值域。期中e=2.71828…是自然對(duì)數(shù)的底數(shù)。
(本小題滿分14分)
已知數(shù)列{an}和{bn}滿足:a1=λ,an+1=其中λ為實(shí)數(shù),n為正整數(shù)。
(Ⅰ)對(duì)任意實(shí)數(shù)λ,證明數(shù)列{an}不是等比數(shù)列;
(Ⅱ)試判斷數(shù)列{bn}是否為等比數(shù)列,并證明你的結(jié)論;
(Ⅲ)設(shè)0<a<b,Sn為數(shù)列{bn}的前n項(xiàng)和。是否存在實(shí)數(shù)λ,使得對(duì)任意正整數(shù)n,都有
a<Sn<b?若存在,求λ的取值范圍;若不存在,說(shuō)明理由。
(本小題滿分14分)
如圖(1),是等腰直角三角形,,、分別為、的中點(diǎn),將沿折起, 使在平面上的射影恰為的中點(diǎn),得到圖(2).
(Ⅰ)求證:;
(Ⅱ)求三棱錐的體積.
一、 選擇題(每小題5分,共60分)
CADACD CDBDBA
二、填空題(每小題4分,共16分)
13. 14. 15. 16.
三、解答題
17.(本小題滿分12分)
解:(Ⅰ)∵,
由,得
兩邊平方:=,∴= ………………6分
(Ⅱ)∵,
∴,解得,
又∵, ∴,
∴,,
設(shè)的夾角為,則,∴
即的夾角為. …………… 12分
18. (本小題滿分12分)
解:(Ⅰ)小王在一年內(nèi)領(lǐng)到駕照的概率為:
………………………( 4分)
(Ⅱ)的取值分別為1,2,3.
,
………………………( 8分)
所以小王參加考試次數(shù)的分布列為:
1
2
3
0.6
0.28
0.12
所以的數(shù)學(xué)期望為 ……………………12分
19.(本小題滿分12分)
(Ⅰ)證明:由已知得,所以,即,
又,,∴, 平面
∴平面平面.……………………………4分(文6分)
(Ⅱ)解:設(shè)的中點(diǎn)為,連接,則∥,
∴是異面直線和所成的角或其補(bǔ)角
由(Ⅰ)知,在中,,,
∴.
所以異面直線和所成的角為.…………………8分(文12分)
(Ⅲ)(解法一)由已知得四邊形是正方形,
∴又,∴,
過(guò)點(diǎn)做于,連接,則,
則即二面角的平面角,
在中,,所以,
又,由余弦定理得,
所以二面角的大小為.……………12分
(解法二)向量法
設(shè)為的中點(diǎn),則,以為坐標(biāo)原點(diǎn),所在直線分別為軸建立空間直角坐標(biāo)系,
則,
設(shè)平面的法向量
由得由得所以
同理得平面的法向量
,
所以所求二面角的大小為.………………12分
20.(本小題滿分12分)
解:(Ⅰ)
當(dāng)時(shí),,∴.
當(dāng)
……………6分
(Ⅱ)當(dāng)時(shí),由(Ⅰ)的討論可知
即
∴
∴………………12分
21.(本小題滿分12分)
解:(Ⅰ)∵
∴
∴
令,則,∴
,∴
∴.……………6分
(Ⅱ)證明:
∴
又∵,∴
∴
∴.………………12分
22.(本小題滿分14分)
解:(Ⅰ)①當(dāng)直線軸時(shí),
則,此時(shí),∴.
(不討論扣1分)
②當(dāng)直線不垂直于軸時(shí),,設(shè)雙曲線的右準(zhǔn)線為,
作于,作于,作于且交軸于
根據(jù)雙曲線第二定義有:,
而到準(zhǔn)線的距離為.
由,得:,
∴,∴,∵此時(shí),∴
綜上可知.………………………………………7分
(Ⅱ)設(shè):,代入雙曲線方程得
∴
令,則,且代入上面兩式得:
①
②
由①②消去得
即 ③
由有:,綜合③式得
由得,解得
∴的取值范圍為…………………………14分
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com