設(shè)數(shù)列滿足..其中為實數(shù). 查看更多

 

題目列表(包括答案和解析)

設(shè)數(shù)列{an}為等比數(shù)列,數(shù)列{bn}滿足bn=na1+(n-1)a2+…+2an-1+an,n∈N*,已知b1=m,b2=
3m2
,其中m≠0.
(Ⅰ)求數(shù)列{an}的首項和公比;
(Ⅱ)當(dāng)m=1時,求bn;
(Ⅲ)設(shè)Sn為數(shù)列{an}的前n項和,若對于任意的正整數(shù)n,都有Sn∈[1,3],求實數(shù)m的取值范圍.

查看答案和解析>>

設(shè)數(shù)列{an}滿足a1=0,an+1=can3+1-c,n∈N*,其中c為實數(shù)
(1)證明:an∈[0,1]對任意n∈N*成立的充分必要條件是c∈[0,1];
(2)設(shè)0<c<
1
3
,證明:an≥1-(3c)n-1,n∈N*;
(3)設(shè)0<c<
1
3
,證明:
a
2
1
+
a
2
2
+…
a
2
n
>n+1-
2
1-3c
,n∈N*

查看答案和解析>>

設(shè)數(shù)列{an}滿足a1=a,an+1=can+1-c(n∈N*),其中a,c為實數(shù),且c≠0.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)a=
1
2
,c=
1
2
,bn=n(1-an)(n∈N*)
,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

設(shè)數(shù)列{an}滿足a1=a,an+1=can+1-c,n∈N*其中a,c為實數(shù),且c≠0
(Ⅰ)求數(shù)列{an}的通項公式
(Ⅱ)設(shè)a=
1
2
,c=
1
2
,bn=n(1-an),n∈N*,求數(shù)列{bn}的前n項和Sn
(Ⅲ)若0<an<1對任意n∈N*成立,求實數(shù)c的范圍.(理科做,文科不做)

查看答案和解析>>

設(shè)數(shù)列{an}前n項和為Sn,且(3-m)Sn+2man=m+3(n∈N*).其中m為實常數(shù),m≠-3且m≠0.
(1)求證:{an}是等比數(shù)列;
(2)若數(shù)列{an}的公比滿足q=f(m)且b1=a1bn=
3
2
f(bn-1)(n∈N*,n≥2)
,求{bn}的通項公式;
(3)若m=1時,設(shè)Tn=a1+2a2+3a3+…+nan(n∈N*),是否存在最大的正整數(shù)k,使得對任意n∈N*均有Tn
k
8
成立,若存在求出k的值,若不存在請說明理由.

查看答案和解析>>


同步練習(xí)冊答案