∵AD∥2FC.∴.又由已知有.∴PF∥ES 查看更多

 

題目列表(包括答案和解析)

如圖,在三棱柱中,側(cè)面為棱上異于的一點,,已知,求:

(Ⅰ)異面直線的距離;

(Ⅱ)二面角的平面角的正切值.

【解析】第一問中,利用建立空間直角坐標(biāo)系

解:(I)以B為原點,分別為Y,Z軸建立空間直角坐標(biāo)系.由于,

在三棱柱中有

,

設(shè)

側(cè)面,故. 因此是異面直線的公垂線,則,故異面直線的距離為1.

(II)由已知有故二面角的平面角的大小為向量的夾角.

 

查看答案和解析>>

 

已知函數(shù).

(Ⅰ)討論函數(shù)的單調(diào)性; 

(Ⅱ)設(shè),證明:對任意,.

    1.選修4-1:幾何證明選講

    如圖,的角平分線的延長線交它的外接圓于點

(Ⅰ)證明:∽△;

(Ⅱ)若的面積,求的大小.

證明:(Ⅰ)由已知條件,可得∠BAE=∠CAD.

因為∠AEB與∠ACB是同弧上的圓周角,所以∠AEB=∠ACD.

故△ABE∽△ADC.

(Ⅱ)因為△ABE∽△ADC,所以,即AB·ACAD·AE.

SAB·ACsin∠BAC,且SAD·AE,故AB·ACsin∠BACAD·AE.

則sin∠BAC=1,又∠BAC為三角形內(nèi)角,所以∠BAC=90°.

 

查看答案和解析>>

學(xué)生李明解以下問題已知α,β,?均為銳角,且sinα+sin?=sinβ,cosβ+cos?=cosα求α-β的值
其解法如下:由已知sinα-sinβ=-sin?,cosα-cosβ=cos?,兩式平方相加得2-2cos(α-β)=1
cos(α-β)=
1
2
又α,β均銳角
-
π
2
<α-β<
π
2

α-β=±
π
3

請判斷上述解答是否正確?若不正確請予以指正.

查看答案和解析>>

如圖,我緝私船在海上B處發(fā)現(xiàn)一走私船在A處正沿直線AD向海岸線CD靠攏,已知AC=DC=10km,AB=BC=5km,而且走私船的速度是我緝私船速度的2倍.我緝私船可采用由海上沿直線向AD行駛在AD上進行攔截,也可現(xiàn)沿直線AC到達C處,再換乘速度是走私船速度3倍的警車,沿直線CD到達D處攔截.請問兩種攔截方案是否可行?

查看答案和解析>>

仔細閱讀下面問題的解法:
設(shè)A=[0,1],若不等式21-x-a>0在A上有解,求實數(shù)a的取值范圍.
解:由已知可得  a<21-x
令f(x)=21-x,不等式a<21-x在A上有解,
∴a<f(x)在A上的最大值
又f(x)在[0,1]上單調(diào)遞減,f(x)max=f(0)=2
∴a<2即為所求.
學(xué)習(xí)以上問題的解法,解決下面的問題:
(1)已知函數(shù)f(x)=x2+2x+3 (-2≤x≤-1)求f(x)的反函數(shù)及反函數(shù)的定義域A;
(2)對于(1)中的A,設(shè)g(x)=
10-x
10+x
x∈A,試判斷g(x)的單調(diào)性;(不證)
(3)又若B={x|
10-x
10+x
>2x+a-5},若A∩B≠Φ,求實數(shù)a的取值范圍.

查看答案和解析>>


同步練習(xí)冊答案