又由于.則.故是等差數(shù)列. 查看更多

 

題目列表(包括答案和解析)

定義:在數(shù)列{an}中,若an2-an-12=p,(n≥2,n∈N*,p為常數(shù)),則稱{an}為“等方差數(shù)列”.下列是對(duì)“等方差數(shù)列”的有關(guān)判斷:
①若{an}是“等方差數(shù)列”,則數(shù)列{
1an
}
是等差數(shù)列;
②{(-2)n}是“等方差數(shù)列”;
③若{an}是“等方差數(shù)列”,則數(shù)列{akn}(k∈N*,k為常數(shù))也是“等方差數(shù)列”;
④若{an}既是“等方差數(shù)列”,又是等差數(shù)列,則該數(shù)列是常數(shù)數(shù)列.
其中正確的命題為
③④
③④
.(寫出所有正確命題的序號(hào))

查看答案和解析>>

已知各項(xiàng)均不為零的數(shù)列{an},定義向量
cn
=(an,an+1)
,
bn
=(n,n+1)
,n∈N*.下列命題中真命題是( 。
A、若?n∈N*總有
cn
bn
成立,則數(shù)列{an}是等差數(shù)列
B、若?n∈N*總有
cn
bn
成立,則數(shù)列{an}是等比數(shù)列
C、若?n∈N*總有
cn
bn
成立,則數(shù)列{an}是等差數(shù)列
D、若?n∈N*總有
cn
bn
成立,則數(shù)列{an}是等比數(shù)列

查看答案和解析>>

(2009•湖北模擬)給出定義:在數(shù)列{an}中,都有
a
2
n
-
a
2
n-1
=p(n≥2,n∈N*)
( p為常數(shù)),則稱{an}為“等方差數(shù)列”.下列是對(duì)“等方差數(shù)列”的判斷:
(1)數(shù)列{an}是等方差數(shù)列,則數(shù)列{
a
2
n
}
是等差數(shù)列;
(2)數(shù)列{(-1)n}是等方差數(shù)列;
(3)若數(shù)列{an}既是等方差數(shù)列,又是等差數(shù)列,則該數(shù)列必為常數(shù)數(shù)列;
(4)若數(shù)列{an}是等方差數(shù)列,則數(shù)列{akn}(k∈N*,k為常數(shù))也是等方差數(shù)列.
其中正確命題序號(hào)為
(1)(2)(3)(4)
(1)(2)(3)(4)

查看答案和解析>>

已知各項(xiàng)均不為零的數(shù)列{an},定義向量
c
=(an,an+1),
b
=(n,n+1),n∈N+.下列命題中為真命題的是( 。

查看答案和解析>>

若數(shù)列{an},(n∈N+)是等比數(shù)列,設(shè)bn=
na1a2an
(n∈N+)
,則數(shù)列{bn} (n∈N+)為等比數(shù)列,類比上述性質(zhì),相應(yīng)地:若數(shù)列{cn} 是等差數(shù)列,且cn>0(n∈N*),則當(dāng)dn=
a1+a2+…+an
n
a1+a2+…+an
n
(n∈N*),則數(shù)列{dn}是等差數(shù)列.

查看答案和解析>>


同步練習(xí)冊答案