題目列表(包括答案和解析)
已知m>1,直線,橢圓C:,、分別為橢圓C的左、右焦點.
(Ⅰ)當直線過右焦點時,求直線的方程;
(Ⅱ)設直線與橢圓C交于A、B兩點,△A、△B的重心分別為G、H.若原點O在以線段GH為直徑的圓內(nèi),求實數(shù)m的取值范圍.[
【解析】第一問中因為直線經(jīng)過點(,0),所以=,得.又因為m>1,所以,故直線的方程為
第二問中設,由,消去x,得,
則由,知<8,且有
由題意知O為的中點.由可知從而,設M是GH的中點,則M().
由題意可知,2|MO|<|GH|,得到范圍
已知中心在坐標原點,焦點在軸上的橢圓C;其長軸長等于4,離心率為.
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)若點(0,1), 問是否存在直線與橢圓交于兩點,且?若存在,求出的取值范圍,若不存在,請說明理由.
【解析】本試題主要考查了橢圓的方程的求解,直線與橢圓的位置關系的運用。
第一問中,可設橢圓的標準方程為
則由長軸長等于4,即2a=4,所以a=2.又,所以,
又由于
所求橢圓C的標準方程為
第二問中,
假設存在這樣的直線,設,MN的中點為
因為|ME|=|NE|所以MNEF所以
(i)其中若時,則K=0,顯然直線符合題意;
(ii)下面僅考慮情形:
由,得,
,得
代入1,2式中得到范圍。
(Ⅰ) 可設橢圓的標準方程為
則由長軸長等于4,即2a=4,所以a=2.又,所以,
又由于
所求橢圓C的標準方程為
(Ⅱ) 假設存在這樣的直線,設,MN的中點為
因為|ME|=|NE|所以MNEF所以
(i)其中若時,則K=0,顯然直線符合題意;
(ii)下面僅考慮情形:
由,得,
,得……② ……………………9分
則.
代入①式得,解得………………………………………12分
代入②式得,得.
綜上(i)(ii)可知,存在這樣的直線,其斜率k的取值范圍是
“若,則是函數(shù)的極值點,因為中, 且,所以0是的極值點.”在此“三段論”中,下列說法正確的是( 。
A.推理過程錯誤 | B.大前提錯誤 | C.小前提錯誤 | D.大、小前提錯誤 |
A.推理過程錯誤 | B.大前提錯誤 | C.小前提錯誤 | D.大、小前提錯誤 |
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com