①有兩個(gè)交點(diǎn)()拋物線與軸相交, 查看更多

 

題目列表(包括答案和解析)

拋物線y=a(x+6)2-3與x軸相交于A,B兩點(diǎn),與y軸相交于C,D為拋物線的頂點(diǎn),直線DE⊥x軸,垂足為E,AE2=3DE.
(1)求這個(gè)拋物線的解析式;
(2)P為直線DE上的一動(dòng)點(diǎn),以PC為斜邊構(gòu)造直角三角形,使直角頂點(diǎn)落在x軸上.若在x軸上的直角頂點(diǎn)只有一個(gè)時(shí),求點(diǎn)P的坐標(biāo);
(3)M為拋物線上的一動(dòng)點(diǎn),過(guò)M作直線MN⊥DM,交直線DE于N,當(dāng)M點(diǎn)在拋物線的第二象限的部分上運(yùn)動(dòng)時(shí),是否存在使點(diǎn)E三等分線段DN的情況?若存在,請(qǐng)求出所有符合條件的M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
精英家教網(wǎng)精英家教網(wǎng)

查看答案和解析>>

拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)為P,與x軸的兩個(gè)交點(diǎn)為M、N(點(diǎn)M在點(diǎn)N的左側(cè)),△PMN的三個(gè)內(nèi)角∠P、∠M、∠N所對(duì)的邊分別為p、m、n,若關(guān)于x的一元二次方程(p-m)x2+2nx+(p+m)=0有兩個(gè)相等的實(shí)數(shù)根.
(1)試判定△PMN的形狀;
(2)當(dāng)頂點(diǎn)P的坐標(biāo)為(2,-1)時(shí),求拋物線的解析式;
(3)在(2)的條件下,平行于x軸的直線與拋物線交于A、B兩點(diǎn),以AB為直徑的圓恰好與x軸相切,求該圓的圓心坐標(biāo).

查看答案和解析>>

拋物線y=ax2-2ax+b(a>0)交x軸于A,B兩點(diǎn),交y軸于C;且滿足OA•OB-OC=0,若C(0,-3)
(1)求這個(gè)拋物線的解析式;
(2)若拋物線的頂點(diǎn)為M,將此拋物線頂點(diǎn)沿直線y=-x-3平移,平移后的拋物線與x軸交于A′、B′兩點(diǎn)  若2≤A′B′≤6,試求出點(diǎn)M的橫坐標(biāo)的取值范圍;
(3)過(guò)點(diǎn)C的直線y=
3
4t
x-3與x軸交于點(diǎn)Q,點(diǎn)P是線段BC上的一個(gè)動(dòng)點(diǎn),過(guò)P作PH⊥OB于點(diǎn)H.若PB=
2
t,且0<t<1.依點(diǎn)P的變化,是否存在t的值,使以P、H、Q為頂點(diǎn)的三角形與△COQ相似?若存在,求出所有t的值;若不存在,說(shuō)明理由.
精英家教網(wǎng)

查看答案和解析>>

拋物線y=a(x+6)2-3與x軸相交于A,B兩點(diǎn),與y軸相交于C,D為拋物線的頂點(diǎn),直線DE⊥x軸,垂足為E,AE2=3DE.
(1)求這個(gè)拋物線的解析式;
(2)P為直線DE上的一動(dòng)點(diǎn),以PC為斜邊構(gòu)造直角三角形,使直角頂點(diǎn)落在x軸上.若在x軸上的直角頂點(diǎn)只有一個(gè)時(shí),求點(diǎn)P的坐標(biāo);
(3)M為拋物線上的一動(dòng)點(diǎn),過(guò)M作直線MN⊥DM,交直線DE于N,當(dāng)M點(diǎn)在拋物線的第二象限的部分上運(yùn)動(dòng)時(shí),是否存在使點(diǎn)E三等分線段DN的情況?若存在,請(qǐng)求出所有符合條件的M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

拋物線y=ax2-2ax+b(a>0)交x軸于A,B兩點(diǎn),交y軸于C;且滿足OA•OB-OC=0,若C(0,-3)
(1)求這個(gè)拋物線的解析式;
(2)若拋物線的頂點(diǎn)為M,將此拋物線頂點(diǎn)沿直線y=-x-3平移,平移后的拋物線與x軸交于A′、B′兩點(diǎn) 若2≤A′B′≤6,試求出點(diǎn)M的橫坐標(biāo)的取值范圍;
(3)過(guò)點(diǎn)C的直線y=數(shù)學(xué)公式x-3與x軸交于點(diǎn)Q,點(diǎn)P是線段BC上的一個(gè)動(dòng)點(diǎn),過(guò)P作PH⊥OB于點(diǎn)H.若PB=數(shù)學(xué)公式t,且0<t<1.依點(diǎn)P的變化,是否存在t的值,使以P、H、Q為頂點(diǎn)的三角形與△COQ相似?若存在,求出所有t的值;若不存在,說(shuō)明理由.

查看答案和解析>>


同步練習(xí)冊(cè)答案