標為.則橫坐標是的兩個實數(shù)根. 查看更多

 

題目列表(包括答案和解析)

已知二次函數(shù)與x軸交點的橫坐標為,則對于下列結(jié)論:①當x=-2時,y=1;②當x>x2時,y>0;③方程有兩個不相等的實數(shù)根x1,x2;④;⑤,其中所有正確的結(jié)論是(    )(只需填寫序號)。

查看答案和解析>>

已知拋物線y=ax2+2x+3(a≠0)有如下兩個特點:①無論實數(shù)a怎樣變化,其頂點都在某一條直線l上;②若把頂點的橫坐標減少數(shù)學公式,縱坐標增大數(shù)學公式分別作為點A的橫、縱坐標;把頂點的橫坐標增加數(shù)學公式,縱坐標增加數(shù)學公式分別作為點B的橫、縱坐標,則A,B兩點也在拋物線y=ax2+2x+3(a≠0)上.
(1)求出當實數(shù)a變化時,拋物線y=ax2+2x+3(a≠0)的頂點所在直線l的解析式;
(2)請找出在直線l上但不是該拋物線頂點的所有點,并說明理由;
(3)你能根據(jù)特點②的啟示,對一般二次函數(shù)y=ax2+bx+c(a≠0)提出一個猜想嗎?請用數(shù)學語言把你的猜想表達出來,并給予證明.

查看答案和解析>>

已知拋物線y=ax2+2x+3(a≠0)有如下兩個特點:①無論實數(shù)a怎樣變化,其頂點都在某一條直線l上;②若把頂點的橫坐標減少,縱坐標增大分別作為點A的橫、縱坐標;把頂點的橫坐標增加,縱坐標增加分別作為點B的橫、縱坐標,則A,B兩點也在拋物線y=ax2+2x+3(a≠0)上。
(1)求出當實數(shù)a變化時,拋物線y=ax2+2x+3(a≠0)的頂點所在直線l的解析式;
(2)請找出在直線l上但不是該拋物線頂點的所有點,并說明理由;
(3)你能根據(jù)特點②的啟示,對一般二次函數(shù)y=ax2+bx+c(a≠0)提出一個猜想嗎?請用數(shù)學語言把你的猜想表達出來,并給予證明。

查看答案和解析>>

已知拋物線y=ax2+2x+3(a≠0)有如下兩個特點:①無論實數(shù)a怎樣變化,其頂點都在某一條直線l上;②若把頂點的橫坐標減少,縱坐標增大分別作為點A的橫、縱坐標;把頂點的橫坐標增加,縱坐標增加分別作為點B的橫、縱坐標,則A,B兩點也在拋物線y=ax2+2x+3(a≠0)上.
(1)求出當實數(shù)a變化時,拋物線y=ax2+2x+3(a≠0)的頂點所在直線l的解析式;
(2)請找出在直線l上但不是該拋物線頂點的所有點,并說明理由;
(3)你能根據(jù)特點②的啟示,對一般二次函數(shù)y=ax2+bx+c(a≠0)提出一個猜想嗎?請用數(shù)學語言把你的猜想表達出來,并給予證明.

查看答案和解析>>

已知拋物線y=ax2+2x+3(a≠0)有如下兩個特點:①無論實數(shù)a怎樣變化,其頂點都在某一條直線l上;②若把頂點的橫坐標減少,縱坐標增大分別作為點A的橫、縱坐標;把頂點的橫坐標增加,縱坐標增加分別作為點B的橫、縱坐標,則A,B兩點也在拋物線y=ax2+2x+3(a≠0)上.

(1)求出當實數(shù)a變化時,拋物線y=ax2+2x+3(a≠0)的頂點所在直線l的解析式;

(2)請找出在直線上但不是該拋物線頂點的所有點,并說明理由;

(3)你能根據(jù)特點②的啟示,對一般二次函數(shù)y=ax2+bx+x(a≠0)提出一個猜想嗎?請用數(shù)學語言把你的猜想表達出來,并給予證明.

查看答案和解析>>


同步練習冊答案