題目列表(包括答案和解析)
設f(x)是定義在[0,1]上的函數(shù),若存在x*∈(0,1),使得f(x)在[0,x*]上單調(diào)遞增,在[x*,1]上單調(diào)遞減,則稱f(x)為[0,1]上的單峰函數(shù),x*為峰點,包含峰點的區(qū)間為含峰區(qū)間.對任意的[0,1]上的單峰函數(shù)f(x),下面研究縮短其含峰區(qū)間長度的方法.
(I)證明:對任意的∈(O,1),,若f()≥f(),則(0,)為含峰區(qū)間:若f()f(),則為含峰區(qū)間:
(II)對給定的r(0<r<0.5),證明:存在∈(0,1),滿足,使得由(I)所確定的含峰區(qū)間的長度不大于0.5+r:
(III)選取∈(O,1),,由(I)可確定含峰區(qū)間為或,在所得的含峰區(qū)間內(nèi)選取,由與或與類似地可確定一個新的含峰區(qū)間,在第一次確定的含峰區(qū)間為(0,)的情況下,試確定的值,滿足兩兩之差的絕對值不小于0.02,且使得新的含峰區(qū)間的長度縮短到0. 34(區(qū)間長度等于區(qū)間的右端點與左端點之差)
一. 選擇題(每小題5分)
題號
1
2
3
4
5
6
7
8
9
10
答案
A
B
D
C
D
B
C
B
C
A
二. 填空題(每小題5分)
11. 12。 13。-1 14。 15。
三. 解答題
……………2分
且2R=,由正弦定理得:
化簡得: ……………4分
由余弦定理:
……………11分
所以,……………12分
17.解:(I)記事件A=“該單位所派的選手都是男職工” ……………1分
則P(A)= ……………3分
(II)記事件B=“該單位男職工、女職工選手參加比賽” ……………4分
則P(B)=……………7分
(III)設該單位至少有一名選手獲獎的概率為P,則
或……………12分
18.(解法一)(I)取AB的中點為Q,連接PQ,則,所以,為AC與BD所成角……………2分
又CD=BD=1,,而PQ=1,DQ=1
……………4分
(II)過D作,連接CR,,
……………6分
在,
……………8分
……………9分
(解法二)(I)如圖,以D為坐標原點,DB、AD、DC所在直線分別為x,y,z軸建立直角坐標系。則A(),C(0,0,1),B(1,0,0),P(),D(0,0,0)
,……2分
所以,異面直線AC與BD所成角的余弦值為……………4分
(II)面DAB的一個法向量為………5分
設面ABC的一個法向量,則
,取,……………7分
則
……………8分
…………9分
(III)不存在。若存在S使得AC,則,與(I)矛盾。故不存在…12分
19.解:(I)在區(qū)間上遞減,其導函數(shù)……………1分
……………4分
故是函數(shù)在區(qū)間上遞減的必要而不充分的條件……………5分
(II)
……………6分
當a>0時,函數(shù)在()上遞增,在上遞減,在上遞增,故有
……………9分
當a〈0時,函數(shù)在上遞增,只要
令,則…………11分
所以在上遞增,又
不能恒成立。
故所求的a的取值范圍為……………12分
20.解:(I)由條件,M到F(1,0)的距離等于到直線 x= -1的距離,所以,曲線C是以F為焦點、直線 x= -1為準線的拋物線,其方程為……………3分
(II)設,代入得:……………5分
由韋達定理
,
……………6分
,只要將A點坐標中的換成,得……7分
……………8分
所以,最小時,弦PQ、RS所在直線的方程為,
即或……………9分
(III),即A、T、B三點共線。
是否存在一定點T,使得,即探求直線AB是否過定點。
由(II)知,直線AB的方程為………10分
即,直線AB過定點(3,0).……………12分
故存在一定點T(3,0),使得……………13分
21.解:(I)因為曲線在處的切線與平行
……………4分
,
(III)。由(II)知:=
,從而……………11分
,
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com