(Ⅱ)∵垂直平分.∴直線的方程為.即. 查看更多

 

題目列表(包括答案和解析)

如圖,F(xiàn)是定直線l外的一個定點,C是l上的動點,有下列結(jié)論:若以C為圓心,CF為半徑的圓與l相交于A、B兩點,過A、B分別作l的垂線與圓C過F的切線相交于點P和點Q,則必在以F為焦點,l為準線的同一條拋物線上.
(Ⅰ)建立適當?shù)淖鴺讼担蟪鲈搾佄锞的方程;
(Ⅱ)對以上結(jié)論的反向思考可以得到另一個命題:“若過拋物線焦點F的直線與拋物線相交于P、Q兩點,則以PQ為直徑的圓一定與拋物線的準線l相切”請問:此命題是正確?試證明你的判斷;
(Ⅲ)請選擇橢圓或雙曲線之一類比(Ⅱ)寫出相應(yīng)的命題并證明其真假.(只選擇一種曲線解答即可,若兩種都選,則以第一選擇為平分依據(jù))
精英家教網(wǎng)

查看答案和解析>>

如圖,F(xiàn)是定直線l外的一個定點,C是l上的動點,有下列結(jié)論:若以C為圓心,CF為半徑的圓與l相交于A、B兩點,過A、B分別作l的垂線與圓C過F的切線相交于點P和點Q,則必在以F為焦點,l為準線的同一條拋物線上.
(Ⅰ)建立適當?shù)淖鴺讼,求出該拋物線的方程;
(Ⅱ)對以上結(jié)論的反向思考可以得到另一個命題:“若過拋物線焦點F的直線與拋物線相交于P、Q兩點,則以PQ為直徑的圓一定與拋物線的準線l相切”請問:此命題是正確?試證明你的判斷;
(Ⅲ)請選擇橢圓或雙曲線之一類比(Ⅱ)寫出相應(yīng)的命題并證明其真假.(只選擇一種曲線解答即可,若兩種都選,則以第一選擇為平分依據(jù))
精英家教網(wǎng)

查看答案和解析>>

如圖,F(xiàn)是定直線l外的一個定點,C是l上的動點,有下列結(jié)論:若以C為圓心,CF為半徑的圓與l相交于A、B兩點,過A、B分別作l的垂線與圓C過F的切線相交于點P和點Q,則必在以F為焦點,l為準線的同一條拋物線上.
(Ⅰ)建立適當?shù)淖鴺讼担蟪鲈搾佄锞的方程;
(Ⅱ)對以上結(jié)論的反向思考可以得到另一個命題:“若過拋物線焦點F的直線與拋物線相交于P、Q兩點,則以PQ為直徑的圓一定與拋物線的準線l相切”請問:此命題是正確?試證明你的判斷;
(Ⅲ)請選擇橢圓或雙曲線之一類比(Ⅱ)寫出相應(yīng)的命題并證明其真假.(只選擇一種曲線解答即可,若兩種都選,則以第一選擇為平分依據(jù))

查看答案和解析>>

(2007•湛江二模)如圖,F(xiàn)是定直線l外的一個定點,C是l上的動點,有下列結(jié)論:若以C為圓心,CF為半徑的圓與l相交于A、B兩點,過A、B分別作l的垂線與圓C過F的切線相交于點P和點Q,則必在以F為焦點,l為準線的同一條拋物線上.
(Ⅰ)建立適當?shù)淖鴺讼,求出該拋物線的方程;
(Ⅱ)對以上結(jié)論的反向思考可以得到另一個命題:“若過拋物線焦點F的直線與拋物線相交于P、Q兩點,則以PQ為直徑的圓一定與拋物線的準線l相切”請問:此命題是正確?試證明你的判斷;
(Ⅲ)請選擇橢圓或雙曲線之一類比(Ⅱ)寫出相應(yīng)的命題并證明其真假.(只選擇一種曲線解答即可,若兩種都選,則以第一選擇為平分依據(jù))

查看答案和解析>>

(2013•奉賢區(qū)一模)某海域有A、B兩個島嶼,B島在A島正東4海里處.經(jīng)多年觀察研究發(fā)現(xiàn),某種魚群洄游的路線是曲線C,曾有漁船在距A島、B島距離和為8海里處發(fā)現(xiàn)過魚群.以A、B所在直線為x軸,AB的垂直平分線為y軸建立平面直角坐標系.
(1)求曲線C的標準方程;
(2)某日,研究人員在A、B兩島同時用聲納探測儀發(fā)出不同頻率的探測信號(傳播速度相同),A、B兩島收到魚群在P處反射信號的時間比為5:3,問你能否確定P處的位置(即點P的坐標)?

查看答案和解析>>


同步練習(xí)冊答案