題目列表(包括答案和解析)
已知函數(shù),且 w.w.w.k.s.5.u.c.o.m
(1) 試用含的代數(shù)式表示b,并求的單調(diào)區(qū)間;
(2)令,設(shè)函數(shù)在處取得極值,記點(diǎn)M (,),N(,),P(), ,請(qǐng)仔細(xì)觀察曲線在點(diǎn)P處的切線與線段MP的位置變化趨勢(shì),并解釋以下問題:
(I)若對(duì)任意的m (, x),線段MP與曲線f(x)均有異于M,P的公共點(diǎn),試確定t的最小值,并證明你的結(jié)論;
(II)若存在點(diǎn)Q(n ,f(n)), x n< m,使得線段PQ與曲線f(x)有異于P、Q的公共點(diǎn),請(qǐng)直接寫出m的取值范圍(不必給出求解過程)w.w.w.k.s.5.u.c.o.m
若已知直線l的斜率為k,與y軸的交點(diǎn)為P(0,b),代入直線方程的點(diǎn)斜式,可得:________,也就是________,則稱b為直線l在y軸上的________,這個(gè)方程是由直線l的________和它在y軸上的________確定的,所以叫做直線方程的________,它是點(diǎn)斜式方程的特殊情況,因此當(dāng)直線l的傾斜角為________時(shí),不能表示為斜截式方程,它的方程為________.
試回答:(其中第(1)&(5)小題只需直接給出最后的結(jié)果,無需求解過程)
(1)記第i(i∈N*)行中從左到右的第j(j∈N*)個(gè)數(shù)為aij,則數(shù)列{aij}的通項(xiàng)公式為 ,
n階楊輝三角中共有 個(gè)數(shù);
(2)第k行各數(shù)的和是;
(3)n階楊輝三角的所有數(shù)的和是;
(4)將第n行的所有數(shù)按從左到右的順序合并在一起得到的多位數(shù)等于;
(5)第p(p∈N*,且p≥2)行除去兩端的數(shù)字1以外的所有數(shù)都能被p整除,則整數(shù)p一定為( )
A.奇數(shù) B.質(zhì)數(shù) C.非偶數(shù) D.合數(shù)
(6)在第3斜列中,前5個(gè)數(shù)依次為1、3、6、10、15;第4斜列中,第5個(gè)數(shù)為35.顯然,1+3+6+10+15=35.事實(shí)上,一般地有這樣的結(jié)論:
第m斜列中(從右上到左下)前k個(gè)數(shù)之和,一定等于第m+1斜列中第k個(gè)數(shù).
試用含有m、k(m、k∈N*)的數(shù)學(xué)公式表示上述結(jié)論并證明其正確性.
數(shù)學(xué)公式為 .
證明: .
已知曲線上動(dòng)點(diǎn)到定點(diǎn)與定直線的距離之比為常數(shù).
(1)求曲線的軌跡方程;
(2)若過點(diǎn)引曲線C的弦AB恰好被點(diǎn)平分,求弦AB所在的直線方程;
(3)以曲線的左頂點(diǎn)為圓心作圓:,設(shè)圓與曲線交于點(diǎn)與點(diǎn),求的最小值,并求此時(shí)圓的方程.
【解析】第一問利用(1)過點(diǎn)作直線的垂線,垂足為D.
代入坐標(biāo)得到
第二問當(dāng)斜率k不存在時(shí),檢驗(yàn)得不符合要求;
當(dāng)直線l的斜率為k時(shí),;,化簡(jiǎn)得
第三問點(diǎn)N與點(diǎn)M關(guān)于X軸對(duì)稱,設(shè),, 不妨設(shè).
由于點(diǎn)M在橢圓C上,所以.
由已知,則
,
由于,故當(dāng)時(shí),取得最小值為.
計(jì)算得,,故,又點(diǎn)在圓上,代入圓的方程得到.
故圓T的方程為:
高一 | 高二 | 合計(jì) | |
合格人數(shù) | |||
不合格人數(shù) | |||
合計(jì) |
P(K2≥k) | 0.10 | 0.05 | 0.010 |
k | 2.706 | 3.841 | 6.535 |
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com