當(dāng)且僅當(dāng)x=,即x=18時(shí)取等號(hào),此時(shí)y取得最大值.----------10分 查看更多

 

題目列表(包括答案和解析)

C

[解析] 依題意得=()[x+(1-x)]=13+≥13+2=25,當(dāng)且僅當(dāng),即x時(shí)取等號(hào),選C.

查看答案和解析>>

已知函數(shù);

(1)若函數(shù)在其定義域內(nèi)為單調(diào)遞增函數(shù),求實(shí)數(shù)的取值范圍。

(2)若函數(shù),若在[1,e]上至少存在一個(gè)x的值使成立,求實(shí)數(shù)的取值范圍。

【解析】第一問(wèn)中,利用導(dǎo)數(shù),因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911301664012899/SYS201207091131067338626240_ST.files/image003.png">在其定義域內(nèi)的單調(diào)遞增函數(shù),所以 內(nèi)滿(mǎn)足恒成立,得到結(jié)論第二問(wèn)中,在[1,e]上至少存在一個(gè)x的值使成立,等價(jià)于不等式 在[1,e]上有解,轉(zhuǎn)換為不等式有解來(lái)解答即可。

解:(1)

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911301664012899/SYS201207091131067338626240_ST.files/image003.png">在其定義域內(nèi)的單調(diào)遞增函數(shù),

所以 內(nèi)滿(mǎn)足恒成立,即恒成立,

亦即,

即可  又

當(dāng)且僅當(dāng),即x=1時(shí)取等號(hào),

在其定義域內(nèi)為單調(diào)增函數(shù)的實(shí)數(shù)k的取值范圍是.

(2)在[1,e]上至少存在一個(gè)x的值使成立,等價(jià)于不等式 在[1,e]上有解,設(shè)

 上的增函數(shù),依題意需

實(shí)數(shù)k的取值范圍是

 

查看答案和解析>>

設(shè)函數(shù)f(x)=ex-x-1,g(x)=e2x-x-7.
(1)解不等式f(x)≤g(x);
(2)事實(shí)上:對(duì)于?x∈R,有f(x)≥0成立,當(dāng)且僅當(dāng)x=0時(shí)取等號(hào).由此結(jié)論證明:(1+
1x
)x
<e,(x>0).

查看答案和解析>>

先閱讀第(1)題的解法,再解決第(2)題:
(1)已知向量
a
=(3,4),
b
=(x,y),
a
b
=1
,求x2+y2的最小值.
解:由|
a
b
|≤|
a
|•|
b
|
1≤
x2+y2
,當(dāng)
b
=(
3
25
4
25
)
時(shí)取等號(hào),
所以x2+y2的最小值為
1
25

(2)已知實(shí)數(shù)x,y,z滿(mǎn)足2x+3y+z=1,則x2+y2+z2的最小值為
1
14
1
14

查看答案和解析>>

先閱讀第(1)題的解法,再解決第(2)題:
(1)已知向量
a
=(3,4),
b
=(x,y),
a
b
=1
,求x2+y2的最小值.
|
a
b
|≤|
a
|•|
b
|
1≤
x2+y2
,當(dāng)
b
=(
3
25
,
4
25
)
時(shí)取等號(hào),
所以x2+y2的最小值為
1
25

(2)已知實(shí)數(shù)x,y,z滿(mǎn)足2x+3y+z=1,則x2+y2+z2的最小值為_(kāi)_____.

查看答案和解析>>


同步練習(xí)冊(cè)答案