所以面.????????????????????????????????????????????? 12分建議:從考題特點(diǎn)來看.對(duì)三視圖的考查分為以下幾類:第一類:單純的識(shí)三視圖和畫三視圖問題,第二類:通過三視圖給出幾何體的相關(guān)尺寸.與求幾何體的表面積和體積累聯(lián)系起來.第三類:通過三視圖給出幾何體的相關(guān)尺寸和各元素間的位置關(guān)系.與線面位置關(guān)系的論證相結(jié)合. 突破考點(diǎn)的關(guān)鍵除了讓學(xué)生掌握口訣“主左一樣高.主俯一樣長.俯左一樣寬 外.還要找準(zhǔn)與投射面投射線平行或垂直的線和面.另外要重點(diǎn)訓(xùn)練一些組合體的三視圖問題. 查看更多

 

題目列表(包括答案和解析)

如圖,長方體中,底面是正方形,的中點(diǎn),是棱上任意一點(diǎn)。

(Ⅰ)證明: ;

(Ⅱ)如果=2 ,=,, 求 的長。

 【解析】(Ⅰ)因底面是正方形,故,又側(cè)棱垂直底面,可得,而,所以,因,所以,又,所以 ;

(Ⅱ)因=2 ,=,,可得,,設(shè),由,即,解得,即 的長為

 

查看答案和解析>>

下面關(guān)于向量的結(jié)論中,
(1)|
AB
|=|
BA
|;
(2)
AB
+
BC
+
CD
+
DA
=
0
;
(3)若
a
b
=0
,則
a
b
;
(4)若向量
AB
平移后,起點(diǎn)和終點(diǎn)的發(fā)生變化,所以
AB
也發(fā)生變化;
(5)已知A、B、C、D四點(diǎn)滿足任三點(diǎn)不共線,但四點(diǎn)共面,O是平面ABCD外任一點(diǎn),且
OA
=2x•
OB
+3y•
OC
+4z•
OD
,則2x+3y+4z=1.
其中正確的序號(hào)為
(1)(2)(3)(5)
(1)(2)(3)(5)

查看答案和解析>>

用反證法證明命題:“若直線AB、CD是異面直線,則直線AC、BD也是異面直線”的過程歸納為以下三個(gè)步驟:
①則A,B,C,D四點(diǎn)共面,所以AB、CD共面,這與AB、CD是異面直線矛盾;
②所以假設(shè)錯(cuò)誤,即直線AC、BD也是異面直線;
③假設(shè)直線AC、BD是共面直線;
則正確的序號(hào)順序?yàn)椋ā 。?/div>

查看答案和解析>>

如圖,在透明塑料制成的長方體ABCD-A1B1C1D1容器內(nèi)裝進(jìn)一些水,將容器底面一邊BC固定于底面上,再將容器傾斜,隨著傾斜度的不同,有下列三個(gè)說法:①水的形狀始終是棱柱形狀;②水面形成的四邊形EFGH的面積不改變;③當(dāng)E∈AA1時(shí),AE+BF是定值.其中正確說法是
①③
①③
.(寫出所以正確說法的序號(hào))

查看答案和解析>>

(本小題滿分12分)

有編號(hào)為,,…的10個(gè)零件,測(cè)量其直徑(單位:cm),得到下面數(shù)據(jù):


其中直徑在區(qū)間[1.48,1.52]內(nèi)的零件為一等品。

(Ⅰ)從上述10個(gè)零件中,隨機(jī)抽取一個(gè),求這個(gè)零件為一等品的概率;

(Ⅱ)從一等品零件中,隨機(jī)抽取2個(gè).

     (。┯昧慵木幪(hào)列出所有可能的抽取結(jié)果;

     (ⅱ)求這2個(gè)零件直徑相等的概率。本小題主要考查用列舉法計(jì)算隨機(jī)事件所含的基本事件數(shù)及事件發(fā)生的概率等基礎(chǔ)知識(shí),考查數(shù)據(jù)處理能力及運(yùn)用概率知識(shí)解決簡單的實(shí)際問題的能力。滿分12分

【解析】(Ⅰ)解:由所給數(shù)據(jù)可知,一等品零件共有6個(gè).設(shè)“從10個(gè)零件中,隨機(jī)抽取一個(gè)為一等品”為事件A,則P(A)==.

      (Ⅱ)(i)解:一等品零件的編號(hào)為.從這6個(gè)一等品零件中隨機(jī)抽取2個(gè),所有可能的結(jié)果有:,,,

,,,共有15種.

      (ii)解:“從一等品零件中,隨機(jī)抽取的2個(gè)零件直徑相等”(記為事件B)的所有可能結(jié)果有:,,共有6種.

      所以P(B)=.

(本小題滿分12分)

如圖,在五面體ABCDEF中,四邊形ADEF是正方形,F(xiàn)A⊥平面ABCD,BC∥AD,CD=1,AD=,∠BAD=∠CDA=45°.

(Ⅰ)求異面直線CE與AF所成角的余弦值;      

(Ⅱ)證明CD⊥平面ABF;

查看答案和解析>>


同步練習(xí)冊(cè)答案