,同理可求得,------3分 查看更多

 

題目列表(包括答案和解析)

2011年3月5日某校組織同學(xué)聽取了溫家寶總理所作的政府工作報(bào)告,并進(jìn)行了檢測(cè),從參加檢測(cè)的高一學(xué)生中隨機(jī)抽出60名學(xué)生,將其成績(jī)(均為整數(shù))分成六段[40,50),[50,60),…,[90,100]后得到如下部分頻率分布直方圖.觀察圖形的信息,回答下列問題:

(Ⅰ)求分?jǐn)?shù)在[70,80)內(nèi)的頻率,并補(bǔ)全這個(gè)頻率分布直方圖;

(Ⅱ)請(qǐng)根據(jù)頻率分布直方圖估計(jì)本次考試中的成績(jī)的平均分及中位數(shù)(可保留一位小數(shù)).

 

查看答案和解析>>

2011年3月5日某校組織同學(xué)聽取了溫家寶總理所作的政府工作報(bào)告,并進(jìn)行了檢測(cè),從參加檢測(cè)的高一學(xué)生中隨機(jī)抽出60名學(xué)生,將其成績(jī)(均為整數(shù))分成六段[40,50),[50,60),…,[90,100]后得到如下部分頻率分布直方圖.觀察圖形的信息,回答下列問題:

(Ⅰ)求分?jǐn)?shù)在[70,80)內(nèi)的頻率,并補(bǔ)全這個(gè)頻率分布直方圖;
(Ⅱ)請(qǐng)根據(jù)頻率分布直方圖估計(jì)本次考試中的成績(jī)的平均分及中位數(shù)(可保留一位小數(shù)).

查看答案和解析>>

(本題滿分18分) 本題共有3個(gè)小題,第1小題滿分4分,第2小題滿分6分. 第3小題滿分8分.

(文)對(duì)于數(shù)列,從中選取若干項(xiàng),不改變它們?cè)谠瓉頂?shù)列中的先后次序,得到的數(shù)列稱為是原來數(shù)列的一個(gè)子數(shù)列. 某同學(xué)在學(xué)習(xí)了這一個(gè)概念之后,打算研究首項(xiàng)為,公差為的無窮等差數(shù)列的子數(shù)列問題,為此,他取了其中第一項(xiàng),第三項(xiàng)和第五項(xiàng).

(1) 若成等比數(shù)列,求的值;

(2) 在, 的無窮等差數(shù)列中,是否存在無窮子數(shù)列,使得數(shù)列為等比數(shù)列?若存在,請(qǐng)給出數(shù)列的通項(xiàng)公式并證明;若不存在,說明理由;

(3) 他在研究過程中猜想了一個(gè)命題:“對(duì)于首項(xiàng)為正整數(shù),公比為正整數(shù)()的無窮等比數(shù)  列,總可以找到一個(gè)子數(shù)列,使得構(gòu)成等差數(shù)列”. 于是,他在數(shù)列中任取三項(xiàng),由的大小關(guān)系去判斷該命題是否正確. 他將得到什么結(jié)論?

 

查看答案和解析>>

(本題滿分18分) 本題共有3個(gè)小題,第1小題滿分4分,第2小題滿分6分. 第3小題滿分8分.
(文)對(duì)于數(shù)列,從中選取若干項(xiàng),不改變它們?cè)谠瓉頂?shù)列中的先后次序,得到的數(shù)列稱為是原來數(shù)列的一個(gè)子數(shù)列. 某同學(xué)在學(xué)習(xí)了這一個(gè)概念之后,打算研究首項(xiàng)為,公差為的無窮等差數(shù)列的子數(shù)列問題,為此,他取了其中第一項(xiàng),第三項(xiàng)和第五項(xiàng).
(1) 若成等比數(shù)列,求的值;
(2) 在, 的無窮等差數(shù)列中,是否存在無窮子數(shù)列,使得數(shù)列為等比數(shù)列?若存在,請(qǐng)給出數(shù)列的通項(xiàng)公式并證明;若不存在,說明理由;
(3) 他在研究過程中猜想了一個(gè)命題:“對(duì)于首項(xiàng)為正整數(shù),公比為正整數(shù)()的無窮等比數(shù)  列,總可以找到一個(gè)子數(shù)列,使得構(gòu)成等差數(shù)列”. 于是,他在數(shù)列中任取三項(xiàng),由的大小關(guān)系去判斷該命題是否正確. 他將得到什么結(jié)論?

查看答案和解析>>

(本題滿分18分) 本題共有3個(gè)小題,第1小題滿分4分,第2小題滿分6分. 第3小題滿分8分.
(文)對(duì)于數(shù)列,從中選取若干項(xiàng),不改變它們?cè)谠瓉頂?shù)列中的先后次序,得到的數(shù)列稱為是原來數(shù)列的一個(gè)子數(shù)列. 某同學(xué)在學(xué)習(xí)了這一個(gè)概念之后,打算研究首項(xiàng)為,公差為的無窮等差數(shù)列的子數(shù)列問題,為此,他取了其中第一項(xiàng),第三項(xiàng)和第五項(xiàng).
(1) 若成等比數(shù)列,求的值;
(2) 在, 的無窮等差數(shù)列中,是否存在無窮子數(shù)列,使得數(shù)列為等比數(shù)列?若存在,請(qǐng)給出數(shù)列的通項(xiàng)公式并證明;若不存在,說明理由;
(3) 他在研究過程中猜想了一個(gè)命題:“對(duì)于首項(xiàng)為正整數(shù),公比為正整數(shù)()的無窮等比數(shù)  列,總可以找到一個(gè)子數(shù)列,使得構(gòu)成等差數(shù)列”. 于是,他在數(shù)列中任取三項(xiàng),由的大小關(guān)系去判斷該命題是否正確. 他將得到什么結(jié)論?

查看答案和解析>>


同步練習(xí)冊(cè)答案