所以.選C. 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)選做題(請考生在以下三個小題中任選一題作答,如果多做,則按所做的第一題評閱記分)
(1)已知曲線C的參數(shù)方程為
x=1+2t
y=at2
(t為參數(shù),a∈R),點M(5,4)在曲線C 上,則曲線C的普通方程為
 

(2)已知不等式x+|x-2c|>1的解集為R,則正實數(shù)c的取值范圍是
 

(3)如圖,PC切圓O于點C,割線PAB經(jīng)過圓心A,PC=4,PB=8,則S△OBC
 

查看答案和解析>>

選考題
請從下列三道題當中任選一題作答,如果多做,則按所做的第一題計分,請在答題卷上注明題號.
22-1設函數(shù)f(x)=|2x-1|+|2x-3|
(1)解不等式f(x)≤5x+1;
(2)若g(x)=
1
f(x)+m
定義域為R,求實數(shù)m的取值范圍.
22-2如圖,在△ABC中,CD是∠ACB的角平分線,△ACD的外接圓交BC于E,AB=2AC,
(1)求證:BE=2AD;
(2)當AC=1,BC=2時,求AD的長.
22-3已知P為半圓C:
x=cosθ
y=sinθ
(θ為參數(shù),0≤θ≤π)
上的點,點A的坐標為(1,0),O為坐標原點,點M在射線OP上,線段OM與半圓C上的弧AP的長度均為
π
3

(1)求以O為極點,x軸的正半軸為極軸建立極坐標系,求點M的極坐標;
(2)求直線AM的參數(shù)方程.

查看答案和解析>>

選修4-4:坐標系與參數(shù)方程
在極坐標系中,曲線C極坐標方程為ρ=2
2
sin(θ-
π
4
)
,以極點為原點,極軸為x軸的正半軸建立平面直角坐標系,直線l的參數(shù)方程為
x=1+
4
5
t
y=-1-
3
5
t
(t為參數(shù)).
求:(1)曲線C和直線l的普通方程;
(2)求直線l被曲線C所截得的弦長.

查看答案和解析>>

選做題(請考生從以下三個小題中任選一個作答,若多選,則按所選的第一題計分.)
A(坐標系與參數(shù)方程選講選做題)直線l:
x=4t
y=3t-2
(t為參數(shù))被曲線C:
x=5+2cosθ
y=3+2sinθ
(θ為參數(shù))所截得的弦長為
2
3
2
3

B(不等式選講選做題)若存在實數(shù)x滿足|x-3|+|x-m|<5,則實數(shù)m的取值范圍為
-2<m<8
-2<m<8

C(幾何證明選講選做題)若一直角三角形的內(nèi)切圓與外接圓的面積分別π與9π,則該三角形的面積為
7
7

查看答案和解析>>

15.選做題(請考生在以下三個小題中任選一題做答,如果多做,則按所做的第一題評閱記分)
A.(選修4—4坐標系與參數(shù)方程)已知點是曲線上任意一點,則點到直線的距離的最小值是            .
B.(選修4—5不等式選講)不等式的解集是           .
C.(選修4—1幾何證明選講)如圖所示,分別是圓的切線,且,,延長點,則的面積是           .

查看答案和解析>>

一、選擇題(每小題5分,共60分)

1.A   2.C     3.C   4.D  5.B   6.A   7.D   8.D  9.C   10.B    11.B      12.D

二、填空題(每小題4分,共16分)

   13.    14.3825     15.1      16.0ⅠⅡ

三、解答題

17.解:(Ⅰ)在中,由及余弦定理得

      而,則

      (Ⅱ)由及正弦定理得,

      而,則

      于是,

     由,當時,。

18解:(Ⅰ)基本事件共有36個,方程有正根等價于,即。設“方程有兩個正根”為事件,則事件包含的基本事件為共4個,故所求的概率為

(Ⅱ)試驗的全部結(jié)果構(gòu)成區(qū)域,其面積為

設“方程無實根”為事件,則構(gòu)成事件的區(qū)域為

,其面積為

故所求的概率為

19.解:(Ⅰ)證明:由平面平面,則

   而平面,則,又,則平面,

   又平面,故。

(Ⅱ)在中,過點于點,則平面

由已知及(Ⅰ)得

(Ⅲ)在中過點于點,在中過點于點,連接,則由

  由平面平面,則平面

再由平面,又平面,則平面

  故當點為線段上靠近點的一個三等分點時,平面

  20.解:(Ⅰ)設等差數(shù)列的公差為

,

(Ⅱ)由

,故數(shù)列適合條件①

,則當時,有最大值20

,故數(shù)列適合條件②.

綜上,故數(shù)列是“特界”數(shù)列。

     21.證明:消去

設點,則,

,,即

化簡得,則

,故

(Ⅱ)解:由

  化簡得

    由,即

故橢圓的長軸長的取值范圍是。

22.解:(Ⅰ),由在區(qū)間上是增函數(shù)

則當時,恒有

在區(qū)間上恒成立。

,解得

(Ⅱ)依題意得

,解得

在區(qū)間上的最大值是。

(Ⅲ)若函數(shù)的圖象與函數(shù)的圖象恰有3個不同的交點,

即方程恰有3個不等的實數(shù)根。

是方程的一個實數(shù)根,則

方程有兩個非零實數(shù)根,

故滿足條件的存在,其取值范圍是

 

 


同步練習冊答案