題目列表(包括答案和解析)
(本小題滿分14分)
已知函數(shù)。
(1)證明:
(2)若數(shù)列的通項公式為,求數(shù)列 的前項和;w.w.w.k.s.5.u.c.o.m
(3)設數(shù)列滿足:,設,
若(2)中的滿足對任意不小于2的正整數(shù),恒成立,
試求的最大值。
(本小題滿分14分)已知,點在軸上,點在軸的正半軸,點在直線上,且滿足,. w.w.w.k.s.5.u.c.o.m
(Ⅰ)當點在軸上移動時,求動點的軌跡方程;
(Ⅱ)過的直線與軌跡交于、兩點,又過、作軌跡的切線、,當,求直線的方程.(本小題滿分14分)設函數(shù)
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若當時,不等式恒成立,求實數(shù)的取值范圍;w.w.w.k.s.5.u.c.o.m
(3)若關于的方程在區(qū)間上恰好有兩個相異的實根,求實數(shù)的取值范圍。(本小題滿分14分)
已知,其中是自然常數(shù),
(1)討論時, 的單調(diào)性、極值;w.w.w.k.s.5.u.c.o.m
(2)求證:在(1)的條件下,;
(3)是否存在實數(shù),使的最小值是3,若存在,求出的值;若不存在,說明理由.
(本小題滿分14分)
設數(shù)列的前項和為,對任意的正整數(shù),都有成立,記。
(I)求數(shù)列的通項公式;
(II)記,設數(shù)列的前項和為,求證:對任意正整數(shù)都有;
(III)設數(shù)列的前項和為。已知正實數(shù)滿足:對任意正整數(shù)恒成立,求的最小值。
一、選擇題(每小題5分,共60分)
1.A 2.C 3.C 4.D 5.B 6.A 7.D 8.D 9.C 10.B 11.B 12.D
二、填空題(每小題4分,共16分)
13. 14.3825 15.1 16.0ⅠⅡ
三、解答題
17.解:(Ⅰ)在中,由及余弦定理得
而,則;
(Ⅱ)由及正弦定理得,
而,則
于是,
由得,當即時,。
18解:(Ⅰ)基本事件共有36個,方程有正根等價于,即。設“方程有兩個正根”為事件,則事件包含的基本事件為共4個,故所求的概率為;
(Ⅱ)試驗的全部結果構成區(qū)域,其面積為
設“方程無實根”為事件,則構成事件的區(qū)域為
,其面積為
故所求的概率為
19.解:(Ⅰ)證明:由平面及得平面,則
而平面,則,又,則平面,
又平面,故。
(Ⅱ)在中,過點作于點,則平面.
由已知及(Ⅰ)得.
故
(Ⅲ)在中過點作交于點,在中過點作交于點,連接,則由得
由平面平面,則平面
再由得平面,又平面,則平面.
故當點為線段上靠近點的一個三等分點時,平面.
20.解:(Ⅰ)設等差數(shù)列的公差為,
則,
(Ⅱ)由
得,故數(shù)列適合條件①
而,則當或時,有最大值20
即,故數(shù)列適合條件②.
綜上,故數(shù)列是“特界”數(shù)列。
21.證明:消去得
設點,則,
由,,即
化簡得,則
即,故
(Ⅱ)解:由
化簡得
由得,即
故橢圓的長軸長的取值范圍是。
22.解:(Ⅰ),由在區(qū)間上是增函數(shù)
則當時,恒有,
即在區(qū)間上恒成立。
由且,解得.
(Ⅱ)依題意得
則,解得
而
故在區(qū)間上的最大值是。
(Ⅲ)若函數(shù)的圖象與函數(shù)的圖象恰有3個不同的交點,
即方程恰有3個不等的實數(shù)根。
而是方程的一個實數(shù)根,則
方程有兩個非零實數(shù)根,
則即且.
故滿足條件的存在,其取值范圍是.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com