已知..分別為的三邊..所對(duì)的角.向量..且. 查看更多

 

題目列表(包括答案和解析)

已知、分別為的三邊、所對(duì)的角,向量,且.
(1)求角的大。
(2)若,,成等差數(shù)列,且,求邊的長(zhǎng).

查看答案和解析>>

已知、分別為的三邊、、所對(duì)的角,向量,,且.

(Ⅰ)求角的大;

(Ⅱ)若,,成等差數(shù)列,且,求邊的長(zhǎng).

查看答案和解析>>

已知、分別為的三邊、所對(duì)的角,向量,且.

(Ⅰ)求角的大。

(Ⅱ)若,,成等差數(shù)列,且,求邊的長(zhǎng).

查看答案和解析>>

已知、、分別為的三邊、所對(duì)的角,向量,,且.
(1)求角的大;
(2)若,成等差數(shù)列,且,求邊的長(zhǎng).

查看答案和解析>>

已知、分別為△的三個(gè)內(nèi)角、所對(duì)的邊,若,,則邊           ;

 

查看答案和解析>>

    2009.3

一、選擇題

(1)B  (2)A  (3)B (4)C (5)B (6)D

(7)D   (8)C  (9)C (10)B (11)A (12)C

二、填空題

        1,3,5

        三、解答題

        (17)解:(Ⅰ)-             ---------------------------2分

        高三年級(jí)人數(shù)為-------------------------3分

        現(xiàn)用分層抽樣的方法在全校抽取48名學(xué)生,應(yīng)在高三年級(jí)抽取的人數(shù)為

        (人).                       --------------------------------------6分

        (Ⅱ)設(shè)“高三年級(jí)女生比男生多”為事件,高三年級(jí)女生、男生數(shù)記為.

        由(Ⅰ)知

        則基本事件空間包含的基本事件有

        共11個(gè),     ------------------------------9分

        事件包含的基本事件有

        共5個(gè)   

                        --------------------------------------------------------------11分

        答:高三年級(jí)女生比男生多的概率為.  …………………………………………12分

        (18)解:(Ⅰ)  …………2分

        中,由于,

                                                …………3分

        ,

                               

        ,所以,而,因此.…………6分

           (Ⅱ)由

        由正弦定理得                                …………8分

        ,

        ,由(Ⅰ)知,所以    …………10分

        由余弦弦定理得 ,     …………11分

        ,

                                                       …………12分

        (19)(Ⅰ)證明:∵、分別為、的中點(diǎn),∴.

             又∵平面平面

        平面                                         …………4分

        (Ⅱ)∵,,∴平面.

        又∵,∴平面.

        平面,∴平面平面.               …………8分

        (Ⅲ)∵平面,∴是三棱錐的高.

        在Rt△中,.

            在Rt△中,.

         ∵,的中點(diǎn),

        ,

        .        ………………12分

        (20)解:(Ⅰ)依題意得

                                     …………2分

         解得,                                             …………4分

        .       …………6分

           (Ⅱ)由已知得,                  …………8分

                                                                 ………………12分

        (21)解:(Ⅰ)

              令=0,得                        ………2分

        因?yàn)?sub>,所以可得下表:

        0

        +

        0

        -

        極大

                                                                  ………………4分

        因此必為最大值,∴,因此,

            

            即,∴,

         ∴                                       ……………6分

        (Ⅱ)∵,∴等價(jià)于, ………8分

         令,則問(wèn)題就是上恒成立時(shí),求實(shí)數(shù)的取值范圍,為此只需,即,                 …………10分

        解得,所以所求實(shí)數(shù)的取值范圍是[0,1].            ………………12分

        (22)解:(Ⅰ)由得,,

        所以直線過(guò)定點(diǎn)(3,0),即.                       …………………2分

         設(shè)橢圓的方程為,

        ,解得,

        所以橢圓的方程為.                    ……………………5分

        (Ⅱ)因?yàn)辄c(diǎn)在橢圓上運(yùn)動(dòng),所以,      ………………6分

        從而圓心到直線的距離

        所以直線與圓恒相交.                             ……………………9分

        又直線被圓截得的弦長(zhǎng)

        ,       …………12分

        由于,所以,則,

        即直線被圓截得的弦長(zhǎng)的取值范圍是.  …………………14分

         

         

         


        同步練習(xí)冊(cè)答案