查看更多

 

題目列表(包括答案和解析)

1、集合A={-1,0,1},B={-2,-1,0},則A∪B=
{-2,-1,0,1}

查看答案和解析>>

2、命題“存在x∈R,使得x2+2x+5=0”的否定是
對任意x∈R,都有x2+2x+5≠0

查看答案和解析>>

3、在等差數(shù)列{an}中,a2+a5=19,S5=40,則a10
29

查看答案和解析>>

5、函數(shù)y=a2-x+1(a>0,a≠1)的圖象恒過定點P,則點P的坐標為
(2,2)

查看答案和解析>>

 

1.A    2.B    3.C    4.C    5.A    6.C   7.D    8.D   9.A   10.C

11.80    12.30    13.c    14.   15. .

三、解答題

16.解:(1)(ka+b)2=3(a-kb)2   k2++2ka?b=3(1+k2-2ka?b)

a?b=  當k=1時取等號.                                (6分)

   (2)a?b=

       

        ∴時,a?b=取最大值1.                                                               (12分)

17.解:(1)由已知有xn+1-1=2(xn-1)

∴{xn-1}是以1為首項以2為公比的等比數(shù)列,又x1=2.

xn-1=2n-1   ∴xn=1+2n-1(n∈N*)                                                             (6分)

   (2)由

又當nN*時,xn≥2故點(xn,yn)在射線x+y=3(xn≥2)上。                (12分)

18.解:(1)記乙勝為事件A,則PA)=

<nobr id="xtfv9"></nobr>

       (2)解法一:由題意:(x,y)=(1,4)或(1,3)

    或(1,2)或(1,1)或(2,3)或(2,2)

    或(2,1)或(3,2)或(3,1)或(4,1)。

    故當x=1,y=4時,x+2y取最大值9,即x=1,

    y=4時乙獲勝的概率最大為.(12分)

    解法二:令t=x+2y,,(x,y)取值如圖所示,由

    線性規(guī)劃知識知x=1,y=4時,t最大,

    x=1,y=4,乙獲勝的概率最大為.                                                   (12分)

    19.解(1)設(shè)正三棱柱的側(cè)棱長為.取中點,連

    是正三角形,

    又底面側(cè)面,且交線為

    側(cè)面.……3分

    ,則直線與側(cè)面所成的角為

    中,,解得

    此正三棱柱的側(cè)棱長為.                       ……5分

    (2)過,連,

    側(cè)面為二面角的平面角.…7分

    中,,

    ,

    中,

    故二面角的大小為.         ……9分

    (3)解法1:由(2)可知,平面,平面平面,且交線為,

    ,則平面.……11分

    中,

    中點,到平面的距離為.  ………… 13

    20.解:

     

    21.解:(1)

    ,故橢圓Qn的焦距2cn≥1.                                                            (4分)

       (2)(i)設(shè)Pn(xn,yn),則

            

     

     

     

     

     

     


    同步練習(xí)冊答案