7.若直線()通過點(diǎn)().則a.b必須滿足關(guān)系 ▲ . 查看更多

 

題目列表(包括答案和解析)

若傾角為的直線通過拋物線的焦點(diǎn)且與拋物線相交于、兩點(diǎn),則線段的長為(    )

(A)   (B)  。–)  。―)

查看答案和解析>>

若傾角為的直線通過拋物線的焦點(diǎn)且與拋物線相交于、兩點(diǎn),則線段的長為(   )
A.B.C.D.

查看答案和解析>>

 【選做題】本題包括A、B、C、D四小題,請選定其中兩題,并在答題卡指定區(qū)域內(nèi)作答,

             若多做,則按作答的前兩題評分。解答時應(yīng)寫出文字說明、證明過程或演算步驟.

A選修4-1:幾何證明選講

   如圖,圓與圓內(nèi)切于點(diǎn),其半徑分別為,

的弦交圓于點(diǎn)不在上),

求證:為定值。

B選修4-2:矩陣與變換

已知矩陣,向量,求向量,使得

C選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,求過橢圓為參數(shù))的右焦點(diǎn)且與直線為參數(shù))平行的直線的普通方程。

D.選修4-5:不等式選講

解不等式:

 

查看答案和解析>>

有(1)、(2)、(3)三個選考題,每題7分,請考生任選2題作答,滿分14分.如果多做,則按所做的前兩題記分.
(1)選修4-2:矩陣與變換
已知點(diǎn)A(1,0),B(2,2),C(3,0),矩陣M表示變換”順時針旋轉(zhuǎn)45°”.
(Ⅰ)寫出矩陣M及其逆矩陣M-1;
(Ⅱ)請寫出△ABC在矩陣M-1對應(yīng)的變換作用下所得△A1B1C1的面積.
(2)選修4-4:坐標(biāo)系與參數(shù)方程
過P(2,0)作傾斜角為α的直線l與曲線E:
x=cosθ
y=
2
2
sinθ
(θ為參數(shù))交于A,B兩點(diǎn).
(Ⅰ)求曲線E的普通方程及l(fā)的參數(shù)方程;
(Ⅱ)求sinα的取值范圍.
(3)(選修4-5 不等式證明選講)
已知正實(shí)數(shù)a、b、c滿足條件a+b+c=3,
(Ⅰ)求證:
a
+
b
+
c
≤3
;
(Ⅱ)若c=ab,求c的最大值.

查看答案和解析>>

有(1)、(2)、(3)三個選考題,每題7分,請考生任選2題作答,滿分14分.如果多做,則按所做的前兩題記分.
(1)選修4-2:矩陣與變換
已知點(diǎn)A(1,0),B(2,2),C(3,0),矩陣M表示變換”順時針旋轉(zhuǎn)45°”.
(Ⅰ)寫出矩陣M及其逆矩陣M-1;
(Ⅱ)請寫出△ABC在矩陣M-1對應(yīng)的變換作用下所得△A1B1C1的面積.
(2)選修4-4:坐標(biāo)系與參數(shù)方程
過P(2,0)作傾斜角為α的直線l與曲線E:
x=cosθ
y=
2
2
sinθ
(θ為參數(shù))交于A,B兩點(diǎn).
(Ⅰ)求曲線E的普通方程及l(fā)的參數(shù)方程;
(Ⅱ)求sinα的取值范圍.
(3)(選修4-5 不等式證明選講)
已知正實(shí)數(shù)a、b、c滿足條件a+b+c=3,
(Ⅰ)求證:
a
+
b
+
c
≤3
;
(Ⅱ)若c=ab,求c的最大值.

查看答案和解析>>

一、填空題:本大題共14小題,每小題5分,共計70分.

1.        2.        3.0        4.充分而不必要        5.        6.2

7. 8.5         9.      10.1.5                11.

13.14.

二、解答題:本大題共6小題,共計90分.

15.(本小題滿分14分)

(1)== ……………………………………2分

== ……………………………………………………………………………………………4分

 ……………………………………………………………………………6分         

(2)==

==…………………………………………………………………………9分

,得………………………………………………………………………10分

 ……………………………………………………………………12分

當(dāng), 即時, …………………………………………………………14分

16.(本小題滿分14分)

(1)在梯形中,,

學(xué)科網(wǎng)(Zxxk.Com)四邊形是等腰梯形,

…………………3分

平面平面,交線為,

平面…………………………………………………6分

(2)當(dāng)時,平面,………………………7分

在梯形中,設(shè),連接,則…………………………………8分

,而,……………………………………………10分

,四邊形是平行四邊形,…………………………………………12分

平面,平面平面…………………………………………14分

18.(本小題滿分16分)

(1)設(shè)橢圓的焦距為2c(c>0),

則其右準(zhǔn)線方程為x=,且F1(-c, 0), F2(c, 0). ……………2分

設(shè)M,

.      ………………………4分

因?yàn)?sub>,所以,即.

    于是,故∠MON為銳角.

所以原點(diǎn)O在圓C外.                            ………………………7分

(2)因?yàn)闄E圓的離心率為,所以a=2c,             …………………8分

    于是M ,且    …………………9分

MN2=(y1-y2)2=y(tǒng)12+y22-2y1y2.  ………… 12分

當(dāng)且僅當(dāng) y1=-y2或y2=-y1時取“=”號,   ……………… 14分

所以(MN)min= 2c=2,于是c=1, 從而a=2,b=,

故所求的橢圓方程是.            ………………… 16分

19.(本小題滿分16分)

(1)函數(shù)的定義域?yàn)?sub>.…………………………………1分

;…………………………………………………………………………………………2分                    

,……………………………………………………………………………………3分

則增區(qū)間為,減區(qū)間為. ………………………………………………………………………4分

(2)令,由(1)知上遞減,在上遞增, …………6分

,且,………………………………………………8分

時, 的最大值為,故時,不等式恒成立. …………10分

(3)方程.記,則

.由;由.

所以上遞減;在上遞增.

,……………………………………12分

所以,當(dāng)時,方程無解;

當(dāng)時,方程有一個解;

當(dāng)時,方程有兩個解;

當(dāng)時,方程有一個解;

當(dāng)時,方程無解. ………………………………………………………………………………14分

綜上所述,時,方程無解;

時,方程有唯一解;

時,方程有兩個不等的解. ……………………………………………16分

20.(本小題滿分16分)

(1)因?yàn)榈谝恍袛?shù)組成的數(shù)列{A1j}(j=1,2,…)是以1為首項(xiàng),公差為3的等差數(shù)列,

所以A1 j=1+(j-1)×3=3 j-2,

第二行數(shù)組成的數(shù)列{A2j}(j=1,2,…)是以4為首項(xiàng),公差為4的等差數(shù)列,

所以A2 j=4+(j-1)×4=4 j.              ……………………2分

所以A2 j-A1 j=4 j-(3 j-2)=j(luò)+2,

所以第j列數(shù)組成的數(shù)列{ Aij}(i=1,2,…)是以3 j-2為首項(xiàng),公差為 j+2的等差數(shù)列,

所以Aij=3 j-2+(i-1) ×(j+2) =ij+2i+2j-4=(i+3) (j+2) 8.   …………5分

故Aij+8=(i+3) (j+2)是合數(shù).

所以當(dāng)=8時,對任意正整數(shù)i、j,總是合數(shù)   …………………6分

(2) (反證法)假設(shè)存在k、m,,使得成等比數(shù)列,

                              ………………………7分

∵bn=Ann =(n+2)2-4

,

,   …………………10分

又∵,且k、m∈N,∴k≥2、m≥3,

,這與∈Z矛盾,所以不存在正整數(shù)k和m,使得成等比數(shù)列.……………………12分

(3)假設(shè)存在滿足條件的,那么

.                         …………………… 14分

不妨令

所以存在使得成等差數(shù)列.         …………………… 16分

(注:第(3)問中數(shù)組不唯一,例如也可以)

 

 

 

 


同步練習(xí)冊答案