(2) 直線與曲線E交于A.B兩點.求的取值范圍. 查看更多

 

題目列表(包括答案和解析)

曲線N:y2=2px(p>0)的焦點到準線的距離為
(1)求曲線N;
(2)過點T(-1,0)作直線l與曲線N交于A、B兩點,在x軸上是否存在一點E(x,0),使得△ABE是等邊三角形,若存在,求出x;若不存在,請說明理由.

查看答案和解析>>

設(shè)直線l:y=kx+m與x軸、y軸正半軸分別交于A、B兩點,M、N是直線l上兩點且
AM
=
MN
=
NB
,曲線C過點M、N.
(1)若曲線C的方程是x2+y2=20,求直線l的方程;
(2)若曲線C是中心在原點、焦點在x軸上的橢圓且離心率e∈(0,
3
2
)
,求直線l斜率的取值范圍.

查看答案和解析>>

已知兩點,滿足條件|PF2|-|PF1|=2的動點P的軌跡是曲線E,直線 l:y=kx-1與曲線E交于A、B兩點.
(Ⅰ)求k的取值范圍;
(Ⅱ)如果,求直線l的方程.

查看答案和解析>>

設(shè)雙曲線C:
x2
a2
-y2
=1(a>0)與直線l:x+y=1相交于兩個不同的點A、B.
(Ⅰ)求雙曲線C的離心率e的取值范圍:
(Ⅱ)設(shè)直線l與y軸的交點為P,且
PA
=
5
12
PB
.求a的值.

查看答案和解析>>

設(shè)雙曲線
x2
a2
-
y2
b2
=1
的離心率e=
2
3
3
,過點A(0,-b)和B(a,0)的直線與原點的距離為
3
2

(1)求雙曲線方程;
(2)直線y=kx+5(k≠0)與雙曲線交于不同的兩點C、D,且C、D兩點都在以A為圓心的同一個圓上,求k值.

查看答案和解析>>


同步練習冊答案