題目列表(包括答案和解析)
在中,、、分別是三內(nèi)角A、B、C的對(duì)應(yīng)的三邊,已知。
(Ⅰ)求角A的大。
(Ⅱ)若,判斷的形狀。
在中,分別是角A、B、C的對(duì)邊,且
(1)求角B的大;
(2)若,求的面積.
在△中,已知a、b、c分別是三內(nèi)角、、所對(duì)應(yīng)的邊長(zhǎng),且
(Ⅰ)求角的大小;
(Ⅱ)若,試判斷△ABC的形狀并求角的大小.
在中,分別是角A、B、C的對(duì)邊,且.
(I)求角;(II)若,求的面積.
在中,記角、、所對(duì)的邊分別為、、,且這三角形的三邊長(zhǎng)是公差為1的等差數(shù)列,若最小邊,則( ).
A. B. C. D.
一、選擇題:本大題共10小題,每小題5分,共50分.
CBCDB DADCA
二、填空題:本大題共5小題,每小題5分,共25分.
11.90 12.[) 13. 14.1 ;3899 15.
三、解答題:本大題共6小題,共75分.
16.(本小題滿分13分)
解:(1)
……3分……4分
令
的單調(diào)區(qū)間,k∈Z。6分
(2)由得 .....7分
又為的內(nèi)角......9分
...11分
。12分
17. (本小題滿分13分)
解:(1)記“甲擊中目標(biāo)的次數(shù)減去乙擊中目標(biāo)的次數(shù)為
,解得.....4分
(2)的所有可能取值為0,1,2.記“在第一次射擊中甲擊中目標(biāo)”為事件;記“在第一次射擊中乙擊中目標(biāo)”為事件.
則,
,.....10分
所以的分布列為
0
1
2
P
∴=.....12分
18. (本小題滿分13分)
解:(1)當(dāng)為中點(diǎn)時(shí),有平面
證明:連結(jié)交于,連結(jié)
∵四邊形是矩形 ∴為中點(diǎn)
又為中點(diǎn),從而
∵平面,平面
∴平面.....4分
(2)建立空間直角坐標(biāo)系如圖所示,
則,,,,
.....6分
所以,.
設(shè)為平面的法向量,則有,即
令,可得平面的一個(gè)法向量為,.....9分
而平面的一個(gè)法向量為 .....10分
所以
所以二面角的余弦值為 .....12分
(用其它方法解題酌情給分)
19.(本小題滿分12分)
解:(1)由題意知
因此數(shù)列是一個(gè)首項(xiàng).公比為3的等比數(shù)列,所以......2分
又=100―(1+3+9)
所以=87,解得
因此數(shù)列是一個(gè)首項(xiàng),公差為―5的等差數(shù)列,
所以 .....4分
(2) 求視力不小于5.0的學(xué)生人數(shù)為.....7分
(3) 由 ①
可知,當(dāng)時(shí), ②
①-②得,當(dāng)時(shí), , www.zxsx.com
, .....11分
又
因此數(shù)列是一個(gè)從第2項(xiàng)開(kāi)始的公比為3的等比數(shù)列,
數(shù)列的通項(xiàng)公式為.....13分
20.(本小題滿分12分)
解:(1)由于,
∴,解得,
∴橢圓的方程是.....3分
(2)∵,∴三點(diǎn)共線,
而,設(shè)直線的方程為,
由消去得:
由,解得.....6分
設(shè),由韋達(dá)定理得①,
又由得:,∴②.
將②式代入①式得:,
消去得: .....10分
設(shè),當(dāng)時(shí), 是減函數(shù),
∴, ∴, www.zxsx.com
解得,又由得,
∴直線AB的斜率的取值范圍是.....13分
21. (本小題滿分12分)
(1)解:
①若
∵,則,∴,即.
∴在區(qū)間是增函數(shù),故在區(qū)間的最小值是
.....2分
②若
令,得.
又當(dāng)時(shí),;當(dāng)時(shí),,
∴在區(qū)間的最小值是.....4分
(2)證明:當(dāng)時(shí),,則,
∴,
當(dāng)時(shí),有,∴在內(nèi)是增函數(shù),
∴,
∴在內(nèi)是增函數(shù),www.zxsx.com
∴對(duì)于任意的,恒成立.....7分
(3)證明:
,
令
則當(dāng)時(shí),≥
,.....10分
令,則,www.zxsx.com
當(dāng)時(shí), ;當(dāng)時(shí),;當(dāng)時(shí),,
則在是減函數(shù),在是增函數(shù),
∴,
∴,
∴,即不等式≥對(duì)于任意的恒成立.....13分
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com