已知各項(xiàng)均為正數(shù)的等比數(shù)列的首項(xiàng).公比為.前n項(xiàng)和為.若.則公比為的取值范圍是 . 查看更多

 

題目列表(包括答案和解析)

已知各項(xiàng)均為正數(shù)的等比數(shù)列

的首項(xiàng),公比為,前n項(xiàng)和為,若,則公比為的取值范圍是                  。

查看答案和解析>>

已知各項(xiàng)均為正數(shù)的等比數(shù)列{an}的首項(xiàng)a1=1,公比為q,前n項(xiàng)和為Sn,若
lim
n→+∞
Sn+1
Sn
=1
,則公比q的取值范圍是( 。
A、q≥1B、0<q<1
C、0<q≤1D、q>1

查看答案和解析>>

已知各項(xiàng)均為正數(shù)的等比數(shù)列{an}的首項(xiàng)為a1=2,且4a1是2a2,a3的等差中項(xiàng).
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式an;
(Ⅱ)若bn=anlog2an,Sn=b1+b2+…+bn,求Sn

查看答案和解析>>

已知各項(xiàng)均為正數(shù)的等比數(shù)列{an}的首項(xiàng)a1=1,公比為q,前n項(xiàng)和為Sn,若
lim
n→+∞
Sn+1
Sn
=1
,則公比q的取值范圍是( 。
A.q≥1B.0<q<1C.0<q≤1D.q>1

查看答案和解析>>

已知各項(xiàng)均為正數(shù)的等比數(shù)列{an}的首項(xiàng)為a1=2,且4a1是2a2,a3,的等差中項(xiàng).
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式an
(Ⅱ)若bn=anlog2an,Sn=b1+b2+…+bn,求Sn

查看答案和解析>>

 

一、填空題(每題5分)

1)  2)  3)0  4)  5)   6) ②④  7)  8)  9)  10)  11)

二、選擇題  (每題5分)

12、A  13、B   14、B   15、D

三、解答題

16、

(1)因?yàn)?sub>,所以∠BCA(或其補(bǔ)角)即為異面直線所成角         -------(3分)

∠ABC=90°, AB=BC=1,所以,     -------(2分)

即異面直線所成角大小為。      -------(1分)

(2)直三棱柱ABC-A1B1C1中,,所以即為直線A1C與平面ABC所成角,所以。            -------(2分)

中,AB=BC=1得到,中,得到,    -------(2分)

 

所以               -------(2分)

17、(10=       -------(1分)

=       -------(1分)

=           -------(1分)

周期;                 -------(1分)

,解得單調(diào)遞增區(qū)間為    -------(2分)

(2),所以,

,

所以的值域?yàn)?sub>,                           -------(4分)

,所以,即       -------(4分)

 

18、,顧客得到的優(yōu)惠率是。         -------(5分)

(2)、設(shè)商品的標(biāo)價(jià)為x元,則500≤x≤800                         ------(2分)

消費(fèi)金額:  400≤0.8x≤640

由題意可得:

1       無解                                 ------(3分)

或(2        得:625≤x≤750                    ------(3分)

 

因此,當(dāng)顧客購買標(biāo)價(jià)在元內(nèi)的商品時(shí),可得到不小于的優(yōu)惠率。------(1分)

 

19、(1)軸的交點(diǎn),              ------(1分)

;所以,即,-                 ----(1分)

因?yàn)?sub>上,所以,即    ----(2分)

(2)若 ),

即若 )         ----(1分)

(A)當(dāng)時(shí),

                                                     ----(1分)

==,而,所以              ----(1分)

(B)當(dāng)時(shí),   ----(1分)

= =,                        ----(1分)

,所以                                       ----(1分)

因此)                              ----(1分)

(3)假設(shè)存在使得成立。

(A)若為奇數(shù),則為偶數(shù)。所以,而,所以,方程無解,此時(shí)不存在。      ----(2分)

(B) 若為偶數(shù),則為奇數(shù)。所以,而,所以,解得                    ----(2分)

由(A)(B)得存在使得成立。                   ----(1分)

 

20、(1)(A):點(diǎn)P與點(diǎn)F(2,0)的距離比它到直線+4=0的距離小2,所以點(diǎn)P與點(diǎn)F(2,0)的距離與它到直線+2=0的距離相等。                ----(1分)

由拋物線定義得:點(diǎn)在以為焦點(diǎn)直線+2=0為準(zhǔn)線的拋物線上,              ----(1分)

拋物線方程為。                             ----(2分) 

解法(B):設(shè)動(dòng)點(diǎn),則。當(dāng)時(shí),,化簡得:,顯然,而,此時(shí)曲線不存在。當(dāng)時(shí),,化簡得:。

 

(2)

,

,               ----(1分)

,即,,           ----(2分)

直線為,所以                      ----(1分)

                         ----(1分)

由(a)(b)得:直線恒過定點(diǎn)。                        ----(1分)

 


同步練習(xí)冊答案