題目列表(包括答案和解析)
設(shè)M是由滿足下列兩個(gè)條件的函數(shù)f(x)構(gòu)成的集合:
①議程f(x)-x=0有實(shí)根;②函數(shù)f(x)的導(dǎo)數(shù)(x)滿足0<(x)<1.
(Ⅰ)若,判斷方程f(x)-x=0的根的個(gè)數(shù);
(Ⅱ)判斷(Ⅰ)中的函數(shù)f(x)是否為集合M的元素;
(Ⅲ)對(duì)于M中的任意函數(shù)f(x),設(shè)x1是方程f(x)-x=0的實(shí)根,求證:對(duì)于f(x)定義域中任意的x2,x3,當(dāng)|x2-x1|<1,且|x3-x1|<1時(shí),有|f(x3)-f(x2)|<2.
設(shè)M是由滿足下列條件的函數(shù)f(x)構(gòu)成的集合:“①方程f(x)-x=0有實(shí)數(shù)根;②函數(shù)f(x)的導(dǎo)數(shù)(x)滿足0<(x)<1.”
(Ⅰ)判斷函數(shù)f(x)=+是否是集合M中的元素,并說明理由;
(Ⅱ)集合M中的元素f(x)具有下面的性質(zhì):若f(x)的定義域?yàn)镈,則對(duì)于任意
[m,n]D,都存在x0∈[m,n],使得等式f(n)-f(m)=(n-m)(x0)成立.試用這一性質(zhì)證明:方程f(x)-x=0只有一個(gè)實(shí)數(shù)根;
(Ⅲ)對(duì)于M中的函數(shù)f(x),設(shè)x1是方程f(x)-x=0的實(shí)數(shù)根,求證:對(duì)于f(x)定義域中任意的x2,x3,當(dāng)|x2-x1|<1,且|x3-x1|<1時(shí),|f(x3)-f(x2)|<2.
已知數(shù)列{an}滿足:a1++ +…+=n2+2n(其中常數(shù)λ>0,n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)當(dāng)λ=4時(shí),是否存在互不相同的正整數(shù)r,s,t,使得ar,as,at成等比數(shù)列?若存在,給出r,s,t滿足的條件;若不存在,說明理由;
(3)設(shè)Sn為數(shù)列{an}的前n項(xiàng)和.若對(duì)任意n∈N*,都有(1-λ)Sn+λan≥2λn恒成立,求實(shí)數(shù)λ的取值范圍.
一、填空題(每題5分)
1) 2) 3)0 4) 5) 6) ②④ 7) 8) 9) 10) 11)
二、選擇題 (每題5分)
12、A 13、B 14、B 15、D
三、解答題
16、
(1)因?yàn)?sub>,所以∠BCA(或其補(bǔ)角)即為異面直線與所成角 -------(3分)
∠ABC=90°, AB=BC=1,所以, -------(2分)
即異面直線與所成角大小為。 -------(1分)
(2)直三棱柱ABC-A1B
中,AB=BC=1得到,中,得到, -------(2分)
所以 -------(2分)
17、(10= -------(1分)
= -------(1分)
= -------(1分)
周期; -------(1分)
,解得單調(diào)遞增區(qū)間為 -------(2分)
(2),所以,
,
所以的值域?yàn)?sub>, -------(4分)
而,所以,即 -------(4分)
18、,顧客得到的優(yōu)惠率是。 -------(5分)
(2)、設(shè)商品的標(biāo)價(jià)為x元,則500≤x≤800 ------(2分)
消費(fèi)金額: 400≤0.8x≤640
由題意可得:
(1)≥ 無解 ------(3分)
或(2) ≥ 得:625≤x≤750 ------(3分)
因此,當(dāng)顧客購買標(biāo)價(jià)在元內(nèi)的商品時(shí),可得到不小于的優(yōu)惠率。------(1分)
19、(1)與軸的交點(diǎn)為, ------(1分)
;所以,即,- ----(1分)
因?yàn)?sub>在上,所以,即 ----(2分)
(2)若 (),
即若 () ----(1分)
(A)當(dāng)時(shí),
----(1分)
==,而,所以 ----(1分)
(B)當(dāng)時(shí), ----(1分)
= =, ----(1分)
而,所以 ----(1分)
因此() ----(1分)
(3)假設(shè)存在使得成立。
(A)若為奇數(shù),則為偶數(shù)。所以,,而,所以,方程無解,此時(shí)不存在。 ----(2分)
(B) 若為偶數(shù),則為奇數(shù)。所以,,而,所以,解得 ----(2分)
由(A)(B)得存在使得成立。 ----(1分)
20、(1)(A):點(diǎn)P與點(diǎn)F(2,0)的距離比它到直線+4=0的距離小2,所以點(diǎn)P與點(diǎn)F(2,0)的距離與它到直線+2=0的距離相等。 ----(1分)
由拋物線定義得:點(diǎn)在以為焦點(diǎn)直線+2=0為準(zhǔn)線的拋物線上, ----(1分)
拋物線方程為。 ----(2分)
解法(B):設(shè)動(dòng)點(diǎn),則。當(dāng)時(shí),,化簡(jiǎn)得:,顯然,而,此時(shí)曲線不存在。當(dāng)時(shí),,化簡(jiǎn)得:。
(2),
,
, ----(1分)
,
,即,, ----(2分)
直線為,所以 ----(1分)
----(1分)
由(a)(b)得:直線恒過定點(diǎn)。 ----(1分)
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com