題目列表(包括答案和解析)
設(shè)橢圓(常數(shù))的左右焦點分別為,是直線上的兩個動點,.
(1)若,求的值;
(2)求的最小值.
【解析】第一問中解:設(shè),則
由得 由,得
②
第二問易求橢圓的標準方程為:
,
所以,當且僅當或時,取最小值.
解:設(shè), ……………………1分
則,由得 ①……2分
(1)由,得 ② ……………1分
③ ………………………1分
由①、②、③三式,消去,并求得. ………………………3分
(2)解法一:易求橢圓的標準方程為:.………………2分
, ……4分
所以,當且僅當或時,取最小值.…2分
解法二:, ………………4分
所以,當且僅當或時,取最小值
| ||
2 |
| ||
2 |
如圖,邊長為2的正方形ABCD,E是BC的中點,沿AE,DE將折起,使得B與C重合于O.
(Ⅰ)設(shè)Q為AE的中點,證明:QDAO;
(Ⅱ)求二面角O—AE—D的余弦值.
【解析】第一問中,利用線線垂直,得到線面垂直,然后利用性質(zhì)定理得到線線垂直。取AO中點M,連接MQ,DM,由題意可得:AOEO, DOEO,
AO=DO=2.AODM
因為Q為AE的中點,所以MQ//E0,MQAO
AO平面DMQ,AODQ
第二問中,作MNAE,垂足為N,連接DN
因為AOEO, DOEO,EO平面AOD,所以EODM
,因為AODM ,DM平面AOE
因為MNAE,DNAE, DNM就是所求的DM=,MN=,DN=,COSDNM=
(1)取AO中點M,連接MQ,DM,由題意可得:AOEO, DOEO,
AO=DO=2.AODM
因為Q為AE的中點,所以MQ//E0,MQAO
AO平面DMQ,AODQ
(2)作MNAE,垂足為N,連接DN
因為AOEO, DOEO,EO平面AOD,所以EODM
,因為AODM ,DM平面AOE
因為MNAE,DNAE, DNM就是所求的DM=,MN=,DN=,COSDNM=
二面角O-AE-D的平面角的余弦值為
已知盒中裝有僅顏色不同的玻璃球6個,其中紅球2個、黑球3個、白球1個.
(1)從中任取1個球, 求取得紅球或黑球的概率;
(2)從中一次取2個不同的球,試列出所有基本事件;并求至少有一個是紅球概率。
(3)從中取2次,每次取1個球,在放回的條件下求至少有一個是紅球概率。
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com