17. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)二次函數(shù)的圖象經(jīng)過三點(diǎn).

(1)求函數(shù)的解析式(2)求函數(shù)在區(qū)間上的最大值和最小值

查看答案和解析>>

(本小題滿分12分)已知等比數(shù)列{an}中, 

   (Ⅰ)求數(shù)列{an}的通項公式an

   (Ⅱ)設(shè)數(shù)列{an}的前n項和為Sn,證明:;

   (Ⅲ)設(shè),證明:對任意的正整數(shù)n、m,均有

查看答案和解析>>

(本小題滿分12分)已知函數(shù),其中a為常數(shù).

   (Ⅰ)若當(dāng)恒成立,求a的取值范圍;

   (Ⅱ)求的單調(diào)區(qū)間.

查看答案和解析>>

(本小題滿分12分)

甲、乙兩籃球運(yùn)動員進(jìn)行定點(diǎn)投籃,每人各投4個球,甲投籃命中的概率為,乙投籃命中的概率為

   (Ⅰ)求甲至多命中2個且乙至少命中2個的概率;

   (Ⅱ)若規(guī)定每投籃一次命中得3分,未命中得-1分,求乙所得分?jǐn)?shù)η的概率分布和數(shù)學(xué)期望.

查看答案和解析>>

(本小題滿分12分)已知是橢圓的兩個焦點(diǎn),O為坐標(biāo)原點(diǎn),點(diǎn)在橢圓上,且,圓O是以為直徑的圓,直線與圓O相切,并且與橢圓交于不同的兩點(diǎn)A、B.

   (1)求橢圓的標(biāo)準(zhǔn)方程;w.w.w.k.s.5.u.c.o.m        

   (2)當(dāng)時,求弦長|AB|的取值范圍.

查看答案和解析>>

一.選擇題:CCBAB BBADA

解析:1:由映射概念可知可得.故選.

2:如圖,+3,在中,由余弦定理得|+3|=||=,故選C。

3:取,由圖象可知,此時注水量大于容器容積的,故選B。

4:因為三角形中的最小內(nèi)角,故,由此可得y=sinx+cosx>1,排除B,C,D,故應(yīng)選A。

5:取x=4,y=?100%≈-8.3%,排除C、D;取x=30,y = ?100%≈77.2%,排除A,故選B。

6:等差數(shù)列的前n項和Sn=n2+(a1-)n可表示為過原點(diǎn)的拋物線,又本題中a1=-9<0, S3=S7,可表示如圖,由圖可知,n=,是拋物線的對稱軸,所以n=5是拋物線的對稱軸,所以n=5時Sn最小,故選B。

7:∵A,B是一對矛盾命題,故必有一真,從而排除錯誤支C,D。又由ab<0,可令a=1,b= -1,代入知B為真,故選B。

8:借助立體幾何的兩個熟知的結(jié)論:(1)一個正方體可以內(nèi)接一個正四面體;(2)若正方體的頂點(diǎn)都在一個球面上,則正方體的對角線就是球的直徑。可以快速算出球的半徑,從而求出球的表面積為,故選A。

9:分析選擇支可知,四條曲線中有且只有一條曲線不符合要求,故可考慮找不符合條件的曲線從而篩選,而在四條曲線中②是一個面積最大的橢圓,故可先看②,顯然直線和曲線是相交的,因?yàn)橹本上的點(diǎn)在橢圓內(nèi),對照選項故選D。

10:,從而對任意的,存在唯一的,使得為常數(shù)。充分利用題中給出的常數(shù)10,100。令,當(dāng)時,,由此得故選A。

二.填空題:11、;   12、;   13、;

14、;  15、

解析:11:不等式等價于,也就是,所以,從而應(yīng)填

12: ,不論的值如何,同號,所以

13:題設(shè)條件等價于點(diǎn)(0,1)在圓內(nèi)或圓上,或等價于點(diǎn)(0,1)到圓的圓心的距離不超過半徑,∴

14.解:由正弦定理得,∴所求直線的極坐標(biāo)方程為.

 

15.解:,

 

三.解答題:

16.解:(Ⅰ)函數(shù) 要有意義需滿足:,解得   …………………………………3分

函數(shù)要有意義需滿足,即,

解得  …………………………………6分

(Ⅱ)由(Ⅰ)可知,

,………………………12分

 

17.解:(I)因?yàn)?sub>是等比數(shù)列,

       又…………………………………………2分

      

       ∴是以a為首項,為公比的等比數(shù)列.………………………………6分

   (II)(I)中命題的逆命題是:若是等比數(shù)列,則也是等比數(shù)列,是假命題.

                           ……………………………………………………………8分

       設(shè)的公比為

       又

       是以1為首項,q為公比的等比數(shù)列,

       是以為首項,q為公比的等比數(shù)列.……………………10分

       即為1,a,qaq,q2aq2,…

       但當(dāng)qa2時,不是等比數(shù)列

       故逆命題是假命題.……………………………………………………………………12分

       另解:取a=2,q=1時,

      

       因此是等比數(shù)列,而不是等比數(shù)列.

       故逆命題是假命題.……………………………………………………………………12分

 

18.解:(1)設(shè)選對一道“可判斷2個選項是錯誤的”題目為事件A,“可判斷1個選項是錯誤的”該題選對為事件B,“不能理解題意的”該題選對為事件C.則---

所以得40分的概率………………………………4分

(2) 該考生得20分的概率=……………………5分

該考生得25分的概率:

=  ……………………6分

該考生得30分的概率:==   --------------7分

該考生得35分的概率:

=            ……………………9分

  ∴該考生得25分或30分的可能性最大………………………………11分

(3)該考生所得分?jǐn)?shù)的數(shù)學(xué)期望=

………………………………14分

19.解:(Ⅰ)由知圓心C的坐標(biāo)為--------------(1分)

∵圓C關(guān)于直線對稱

∴點(diǎn)在直線上  -----------------(2分)

即D+E=-2,------------①且-----------------②-----------------(3分)

又∵圓心C在第二象限   ∴  -----------------(4分)

由①②解得D=2,E=-4     -----------------(5分)

∴所求圓C的方程為:  ------------------(6分)

  (Ⅱ)切線在兩坐標(biāo)軸上的截距相等且不為零,設(shè)  -----------(7分)

        圓C:

圓心到切線的距離等于半徑,

                   

。                    ------------------(12分)

所求切線方程     ------------------(14分)

 

20.(Ⅰ)證明:在正方體中,∵平面∥平面

      平面平面,平面平面

      ∴.-------------------------------------3分

 (Ⅱ)解:如圖,以D為原點(diǎn)分別以DA、DC、DD1

x、y、z軸,建立空間直角坐標(biāo)系,則有

D1(0,0,2),E(2,1,2),F(xiàn)(0,2,1),

,

      設(shè)平面的法向量為

     則由,和,得,

     取,得,∴ ------------------------------6分

又平面的法向量為(0,0,2)

    ∴截面與底面所成二面角的余弦值為. ------------------9分

(Ⅲ)解:設(shè)所求幾何體的體積為V,

        ∵,,

        ∴,,

       ∴,

--------------------------11分

故V棱臺

                        

     ∴V=V正方體-V棱臺. ------------------14分

 

21.解:(Ⅰ)由題意,在[]上遞減,則解得

所以,所求的區(qū)間為[-1,1]         ………………………4分

(Ⅱ)取,即不是上的減函數(shù)。

,

不是上的增函數(shù)

所以,函數(shù)在定義域內(nèi)不單調(diào)遞增或單調(diào)遞減,從而該函數(shù)不是閉函數(shù)。-------9分

(Ⅲ)若是閉函數(shù),則存在區(qū)間[],在區(qū)間[]上,函數(shù)的值域?yàn)閇],即,為方程的兩個實(shí)數(shù)根,

即方程有兩個不等的實(shí)根。

當(dāng)時,有,解得。

當(dāng)時,有,無解。

綜上所述,---------------------------------------------14分


同步練習(xí)冊答案