如果.那么等于w.w.w.k.s.5.u.c.o.m 查看更多

 

題目列表(包括答案和解析)

本題有(1)、(2)、(3)三個(gè)選答題,每小題7分,請(qǐng)考生任選2題作答,滿分14分,如果多做,則按所做的前兩題計(jì)分.作答時(shí),先用2B鉛筆在答題卡上把所選題目對(duì)應(yīng)的題號(hào)涂黑,并將所選題號(hào)填入括號(hào)中.
(1)(本小題滿分7分)選修4-2:矩陣與變換
已知矩陣,向量
(I)求矩陣的特征值、和特征向量
(II)求的值.
(2)(本小題滿分7分)選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系xOy中,已知曲線C的參數(shù)方程為.以直角坐標(biāo)系原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為
(Ⅰ)求直線l的直角坐標(biāo)方程;
(Ⅱ)點(diǎn)P為曲線C上的動(dòng)點(diǎn),求點(diǎn)P到直線l距離的最大值.
(3)(本小題滿分7分)選修4-5:不等式選講
(Ⅰ)已知:a、b、;w.w.w.k.s.5.u.c.o.m   
(Ⅱ)某長方體從一個(gè)頂點(diǎn)出發(fā)的三條棱長之和等于3,求其對(duì)角線長的最小值.

查看答案和解析>>

已知拋物線

(1)當(dāng)為何值時(shí),拋物線與軸有兩個(gè)交點(diǎn)?

(2)若關(guān)于的方程的兩個(gè)不等實(shí)根的倒數(shù)平方和大于2,求的取值范圍。w.w.w.k.s.5.u.c.o.m    

(3)如果拋物線與軸相交于A,B兩點(diǎn),與軸交于C點(diǎn),且ABC的面積等于2,試求的值。

查看答案和解析>>

如果a,b,c都是實(shí)數(shù),那么P∶ac<0,是q∶關(guān)于x的方程ax2+bx+c=0有一個(gè)正根和一個(gè)負(fù)根的(   )

(A)必要而不充分條件              (B)充要條件w.w.w.k.s.5.u.c.o.m

(C)充分而不必要條件              (D)既不充分也不必要條件

查看答案和解析>>

如果執(zhí)行右面的程序框圖,那么輸出的(  ). w.w.w.k.s.5.u.c.o.m 

A.22            B.46            C.           D.190

 

查看答案和解析>>

如果圓不全為零)與y軸相切于原點(diǎn),那么

            w.w.w.k.s.5.u.c.o.m        

          

查看答案和解析>>

一.選擇題:DABBB ACACA

解析:1:由題干可得:故選.

2:為拋物線的內(nèi)部(包括周界),為動(dòng)圓的內(nèi)部(包括周界).該題的幾何意義是為何值時(shí),動(dòng)圓進(jìn)入?yún)^(qū)域,并被所覆蓋.

是動(dòng)圓圓心的縱坐標(biāo),顯然結(jié)論應(yīng)是,故可排除,而當(dāng)時(shí),(可驗(yàn)證點(diǎn)到拋物線上點(diǎn)的最小距離為).故選.

 

3:由f(x+2)=-f(x)得f(7.5)=-f(5.5)=f(3.5)=-f(1.5)=f(-0.5),由f(x)是奇函數(shù),得f(-0.5)=-f(0.5)=-0.5,所以選B.

 

4:取a=100,b=10,此時(shí)P=,Q==lg,R=lg55=lg,比較可知選PQR,所以選B

5: f(x+)=sin[-2(x+)]+sin[2(x+)]=-f(x),而f(x+π)=sin[-2(x+π)]+sin[2(x+π)]=f(x).所以應(yīng)選B;

 

6:在同一直角坐標(biāo)系中作出圓x+y=4和直線4x+3y-12=0后,由圖可知距離最小的點(diǎn)在第一象限內(nèi),所以選A.

7:不等式的“極限”即方程,則只需驗(yàn)證x=2,2.5,和3哪個(gè)為方程的根,逐一代入,選C.

8:當(dāng)正n棱錐的頂點(diǎn)無限趨近于底面正多邊形中心時(shí),則底面正多邊形便為極限狀態(tài),此時(shí)棱錐相鄰兩側(cè)面所成二面角α→π,且小于π;當(dāng)棱錐高無限大時(shí),正n棱柱便又是另一極限狀態(tài),此時(shí)α→π,且大于π,故選(A).

9:取滿足題設(shè)的特殊函數(shù)f(x)=x,g(x)=|x|,則f(b)-f(-a)=a+b,g(a)-g(-b)=a-b,又f(a)-f(-b)=a+b,g(b)-g(-a)=b-a;∴選(C).

 

10:作直線和圓的圖象,從圖中可以看出:

的取值范圍應(yīng)選(A).

 

 

二.填空題:11、;  12、;

13、;   14、(x-1)2+(y-1)2=2;15、;

解析:

11根據(jù)不等式解集的幾何意義,作函數(shù)

函數(shù)的圖象(如圖),從圖上容易得出實(shí)數(shù)a的取

值范圍是。

12: 應(yīng)用復(fù)數(shù)乘法的幾何意義,得

     

      

于是        故應(yīng)填 

13:中獎(jiǎng)號(hào)碼的排列方法是: 奇位數(shù)字上排不同的奇數(shù)有種方法,偶位數(shù)字上排偶數(shù)的方法有,從而中獎(jiǎng)號(hào)碼共有種,于是中獎(jiǎng)面為

  故應(yīng)填

14:解:由=,

,化簡得(x-1)2+(y-1)2=2

15.解:依題意,=2,5,=15,=

三.解答題:

16.解:(1)由,解之得  ……………………5分

(2)  …………………………9分

         …………………………11分

  …………………………12分

17.解:(I)的取值為1,3,又

      ξ

      1

      3

      P

       

       

             ∴ξ的分布列為                                   …………………………5分

       

             ∴Eξ=1×+3×=.                        ………………………………6分

         (II)當(dāng)S8=2時(shí),即前八秒出現(xiàn)“○”5次和“×”3次,又已知

             若第一、三秒出現(xiàn)“○”,則其余六秒可任意出現(xiàn)“○”3次;

             若第一、二秒出現(xiàn)“○”,第三秒出現(xiàn)“×”,則后五秒可任出現(xiàn)“○”3次.

             故此時(shí)的概率為…………12分

      18.解:(Ⅰ)∵函數(shù)是奇函數(shù),則

        ∴   …………………………2分

         解得

      ,.   …………………………5分

      (Ⅱ)由(Ⅰ)知,     ∴,   ………………6分

      當(dāng)時(shí)  …………………………8分

       ∴,即函數(shù)在區(qū)間上為減函數(shù).   …………………………9分

      (Ⅲ)由=0,   …………………………11分

        ∵當(dāng),,∴ , 

       即函數(shù)在區(qū)間上為增函數(shù)   …………………………13分

      是函數(shù)的最小值點(diǎn),即函數(shù)取得最小值.  ………14分

      19.解:(Ⅰ)設(shè)正三棱柱的側(cè)棱長為.取中點(diǎn),連

      是正三角形,.  …………………………2分

      又底面側(cè)面,且交線為側(cè)面

      ,則直線與側(cè)面所成的角為.   ……………………4分

      中,,解得

      此正三棱柱的側(cè)棱長為.  …………………………5分

      (Ⅱ)如圖,建立空間直角坐標(biāo)系

      .  …………………………7分

      設(shè)為平面的法向量.

                             …………………………9分

      又平面的一個(gè)法向量

      結(jié)合圖形可知,二面角的大小為  …………………………11分

       

      (Ⅲ):由(Ⅱ)得  …………………………12分

      點(diǎn)到平面的距離

                                                   …………………………14分

      20.解:(Ⅰ)當(dāng)時(shí),原不等式即,解得,

          ∴------------------------------2分

      (Ⅱ)原不等式等價(jià)于

      ……………………………………………..4分

      ………………………………………………………..6分

      ……8分

      (Ⅲ)∵

      n=1時(shí),;n=2時(shí),

      n=3時(shí),;n=4時(shí),

      n=5時(shí),;n=6時(shí),…………………………………………9分

      猜想:時(shí) 下面用數(shù)學(xué)歸納法給出證明

      ①當(dāng)n=5時(shí),,已證…………………………………………………….10分

      ②假設(shè)時(shí)結(jié)論成立即

      那么n=k+1時(shí),

      范圍內(nèi),恒成立,則,即

      由①②可得,猜想正確,即時(shí),…………………………………..  13分

      綜上所述:當(dāng)n=2,4時(shí),;當(dāng)n=3時(shí),;當(dāng)n=1或時(shí);---14分

      21.解:(Ⅰ)由條件得M(0,-),F(xiàn)(0,).設(shè)直線AB的方程為

             y=kx+,A(,),B()

             則,,Q().   …………………………2分

             由.

             ∴由韋達(dá)定理得+=2pk,?=-    …………………………3分

             從而有= +=k(+)+p=2pk÷p.

             ∴?的取值范圍是.      …………………………4分

         (Ⅱ)拋物線方程可化為,求導(dǎo)得.

             ∴       =y     .

             ∴切線NA的方程為:y-.

             切線NB的方程為:  …………………………6分

             由解得∴N()

             從而可知N點(diǎn)Q點(diǎn)的橫坐標(biāo)相同但縱坐標(biāo)不同.

             ∴NQ∥OF.即    …………………………7分

             又由(Ⅰ)知+=2pk,?=-p

             ∴N(pk,-).      …………………………8分

             而M(0,-)  ∴

             又. ∴.       …………………………9分

         (Ⅲ)由.又根據(jù)(Ⅰ)知

             ∴4p=pk,而p>0,∴k=4,k=±2.   …………………………10分

             由于=(-pk,p),  

             ∴

             從而.         …………………………11分

             又||=,||=

             ∴.

             而的取值范圍是[5,20].

             ∴5≤5p2≤20,1≤p2≤4.   …………………………13分

             而p>0,∴1≤p≤2.

             又p是不為1的正整數(shù).

             ∴p=2.

             故拋物線的方程:x2=4y.      …………………………14分


      同步練習(xí)冊(cè)答案