題目列表(包括答案和解析)
已知曲線的參數(shù)方程是(是參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線:的極坐標方程是=2,正方形ABCD的頂點都在上,且A,B,C,D依逆時針次序排列,點A的極坐標為(2,).
(Ⅰ)求點A,B,C,D的直角坐標;
(Ⅱ)設P為上任意一點,求的取值范圍.
【命題意圖】本題考查了參數(shù)方程與極坐標,是容易題型.
【解析】(Ⅰ)由已知可得,,
,,
即A(1,),B(-,1),C(―1,―),D(,-1),
(Ⅱ)設,令=,
則==,
∵,∴的取值范圍是[32,52]
,,為常數(shù),離心率為的雙曲線:上的動點到兩焦點的距離之和的最小值為,拋物線:的焦點與雙曲線的一頂點重合。(Ⅰ)求拋物線的方程;(Ⅱ)過直線:(為負常數(shù))上任意一點向拋物線引兩條切線,切點分別為、,坐標原點恒在以為直徑的圓內(nèi),求實數(shù)的取值范圍。
【解析】第一問中利用由已知易得雙曲線焦距為,離心率為,則長軸長為2,故雙曲線的上頂點為,所以拋物線的方程
第二問中,為,,,
故直線的方程為,即,
所以,同理可得:
借助于根與系數(shù)的關系得到即,是方程的兩個不同的根,所以
由已知易得,即
解:(Ⅰ)由已知易得雙曲線焦距為,離心率為,則長軸長為2,故雙曲線的上頂點為,所以拋物線的方程
(Ⅱ)設為,,,
故直線的方程為,即,
所以,同理可得:,
即,是方程的兩個不同的根,所以
由已知易得,即
b2+c2-a2 |
2bc |
a2+c2-b2 |
2ac |
x |
x+2 |
x |
x+2 |
x |
3x+4 |
x |
7x+8 |
x |
(2n-1)x+2n |
x |
(2n-1)x+2n |
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com