題目列表(包括答案和解析)
(本小題滿分14分)
已知函數(shù)。
(1)證明:
(2)若數(shù)列的通項公式為,求數(shù)列 的前項和;w.w.w.k.s.5.u.c.o.m
(3)設(shè)數(shù)列滿足:,設(shè),
若(2)中的滿足對任意不小于2的正整數(shù),恒成立,
試求的最大值。
(本小題滿分14分)已知,點在軸上,點在軸的正半軸,點在直線上,且滿足,. w.w.w.k.s.5.u.c.o.m
(Ⅰ)當點在軸上移動時,求動點的軌跡方程;
(Ⅱ)過的直線與軌跡交于、兩點,又過、作軌跡的切線、,當,求直線的方程.(本小題滿分14分)設(shè)函數(shù)
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若當時,不等式恒成立,求實數(shù)的取值范圍;w.w.w.k.s.5.u.c.o.m
(3)若關(guān)于的方程在區(qū)間上恰好有兩個相異的實根,求實數(shù)的取值范圍。(本小題滿分14分)
已知,其中是自然常數(shù),
(1)討論時, 的單調(diào)性、極值;w.w.w.k.s.5.u.c.o.m
(2)求證:在(1)的條件下,;
(3)是否存在實數(shù),使的最小值是3,若存在,求出的值;若不存在,說明理由.
(本小題滿分14分)
設(shè)數(shù)列的前項和為,對任意的正整數(shù),都有成立,記。
(I)求數(shù)列的通項公式;
(II)記,設(shè)數(shù)列的前項和為,求證:對任意正整數(shù)都有;
(III)設(shè)數(shù)列的前項和為。已知正實數(shù)滿足:對任意正整數(shù)恒成立,求的最小值。
1.C 2.B 3.B 4.D 5.C 6.A 7.B 8.B 9.D 10.C
11. 12.1 13. 14.4 15.
16.當a>1時,有,∴,∴,∴,∴當0<a<1時,有,∴.
綜上,當a>1時,;當0<a<1時,
17.(Ⅰ)有0枚正面朝上的概率為,有1枚正面朝上的概率為:
∴
(Ⅱ)出現(xiàn)奇數(shù)枚正面朝上的概率為:
∴出現(xiàn)偶數(shù)枚正面朝上的概率為,∴概率相等.
18.(Ⅰ)在梯形ABCD中,∵,
∴四邊形ABCD是等腰梯形,
且
∴,∴
又∵平面平面ABCD,交線為AC,∴平面ACFE.
(Ⅱ)當時,平面BDF. 在梯形ABCD中,設(shè),連結(jié)FN,則
∵而,∴∴MFAN,
∴四邊形ANFM是平行四邊形. ∴
又∵平面BDF,平面BDF. ∴平面BDF.
19.(Ⅰ)設(shè)橢圓方程為,則有,∴a=6, b=3.
∴橢圓C的方程為
(Ⅱ),設(shè)點,則
∴,
∵,∴,∴∴的最小值為6.
20.(Ⅰ)設(shè),,
∴在單調(diào)遞增.
(Ⅱ)當時,,又,,即;
當時,,,由,得或.
的值域為
(Ⅲ)當x=0時,,∴x=0為方程的解.
當x>0時,,∴,∴
當x<0時,,∴,∴
即看函數(shù)
與函數(shù)圖象有兩個交點時k的取值范圍,應用導數(shù)畫出的大致圖象,∴,∴
21.(Ⅰ)令n=1有,,∴,∴.
(Ⅱ)∵……① ∴當時,有……②
①-②有,
∴
將以上各式左右兩端分別相乘,得,∴
當n=1,2時也成立,∴.
(Ⅲ),當時,
,
∵
∴
當時,
當時,
當時,
∴
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com