.解得:或 查看更多

 

題目列表(包括答案和解析)

解:因為有負根,所以在y軸左側(cè)有交點,因此

解:因為函數(shù)沒有零點,所以方程無根,則函數(shù)y=x+|x-c|與y=2沒有交點,由圖可知c>2


 13.證明:(1)令x=y=1,由已知可得f(1)=f(1×1)=f(1)f(1),所以f(1)=1或f(1)=0

若f(1)=0,f(0)=f(1×0)=f(1)f(0)=0,所以f(1)=f(0)與已知條件“”矛盾所以f(1)≠0,因此f(1)=1,所以f(1)-1=0,1是函數(shù)y=f(x)-1的零點

(2)因為f(1)=f[(-1)×(-1)]=f2(-1)=,所以f(-1)=±1,但若f(-1)=1,則f(-1)=f(1)與已知矛盾所以f(-1)不能等于1,只能等于-1。所以任x∈R,f(-x)=f(-1)f(x)=-f(x),因此函數(shù)是奇函數(shù)

數(shù)字1,2,3,4恰好排成一排,如果數(shù)字i(i=1,2,3,4)恰好出現(xiàn)在第i個位置上則稱有一個巧合,求巧合數(shù)的分布列。

查看答案和解析>>

解析:A錯誤.如圖①所示,由兩個結(jié)構(gòu)相同的三棱錐疊放在一起構(gòu)成的幾何體,各面都是三角形,但它不是棱錐.B錯誤.如答圖②③所示,若△ABC不是直角三角形,或是直角三角形但旋轉(zhuǎn)軸不是直角邊,所得的幾何體都不是圓錐.C錯誤.若六棱錐的所有棱都相等,則底面多邊形是正六邊形.由幾何圖形知,若以正六邊形為底面,側(cè)棱長必然要大于底面邊長.D正確.

答案:D

查看答案和解析>>

解答題:解答應寫出文字說明、證明過程或演算步驟.

美國藍球職業(yè)聯(lián)賽(NBA)某賽季的總決賽在湖人隊與活塞隊之間進行,比賽采取七局四勝制,即若有一隊勝四場,則此隊獲勝且比賽結(jié)束.因兩隊實力非常接近,在每場比賽中每隊獲勝是等可能的.據(jù)資料統(tǒng)計,每場比賽組織者可獲門票收入100萬美元.求在這次總決賽過程中,比賽組織者獲得門票收入(萬美元)的概率分布及數(shù)學期望

查看答案和解析>>

解答題:解答應寫出文字說明,證明過程或演算步驟

已知函數(shù),求使得f(x+k)>1成立的x的集合.

查看答案和解析>>

解答題:解答應寫出文字說明,證明過程或演算步驟

已知數(shù)列{an}中a1=1,且P(anan+1)在直線x-y+1=0上,

(1)

求數(shù)列{an}的通項公式

(2)

,求Tn的最小值

(3)

,Sn是{bn}的前n項和,問:是否存在關(guān)于n的整式g(n)使得S1+S2+…+Sn-1=(Sn-1)g(n)對一切n≥2的自然n恒成立說明理由.

查看答案和解析>>


同步練習冊答案