19. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分16分)

已知正三角形OAB的三個頂點都在拋物線上,其中O為坐標(biāo)原點,設(shè)圓C是的外接圓(點C為圓心)(1)求圓C的方程;(2)設(shè)圓M的方程為,過圓M上任意一點P分別作圓C的兩條切線PE、PF,切點為E、F,求的最大值和最小值

查看答案和解析>>

(本小題滿分16分)已知函數(shù)在區(qū)間上的最小值為,令,,求證:

查看答案和解析>>

(本小題滿分16分)某連鎖分店銷售某種商品,每件商品的成本為4元,并且每件商品需向總店交a元(1≤a≤3)的管理費(fèi),預(yù)計當(dāng)每件商品的售價為元(8≤x≤9)時,一年的銷售量為(10-x)2萬件.(1)求該連鎖分店一年的利潤L(萬元)與每件商品的售價x的函數(shù)關(guān)系式L(x);

(2)當(dāng)每件商品的售價為多少元時,該連鎖分店一年的利潤L最大,并求出L的最大值M(a).

查看答案和解析>>

(本小題滿分16分)設(shè)數(shù)列的前n項和為,數(shù)列滿足: ,且數(shù)列的前

n項和為.

(1) 求的值;

(2) 求證:數(shù)列是等比數(shù)列;

(3) 抽去數(shù)列中的第1項,第4項,第7項,……,第3n-2項,……余下的項順序不變,組成一個新數(shù)列,若的前n項和為,求證:.

查看答案和解析>>

(本小題滿分16分)某連鎖分店銷售某種商品,每件商品的成本為4元,并且每件商品需向總店交a元(1≤a≤3)的管理費(fèi),預(yù)計當(dāng)每件商品的售價為元(8≤x≤9)時,一年的銷售量為(10-x)2萬件.(1)求該連鎖分店一年的利潤L(萬元)與每件商品的售價x的函數(shù)關(guān)系式L(x);(2)當(dāng)每件商品的售價為多少元時,該連鎖分店一年的利潤L最大,并求出L的最大值M(a).

查看答案和解析>>

一、填空題:

 1.;             2.;               3.;         4.;          5.;

6.;      7.              8.;      9.21;                      10.;

11.;12.;           13.;       14.

二、解答題:

15.(1)編號為016;                     ----------------------------3分

(2)

分組

頻數(shù)

頻率

60.5~70.5

8

0.16

70.5~80.5

10

0.20

80.5~90.5

18

0.36

90.5~100.5

14

0.28

合計

50

1

 

 

 

 

 

 

 

 

  ------------- ----------------------------8分

(3)在被抽到的學(xué)生中獲二獎的人數(shù)是9+7=16人,

占樣本的比例是,即獲二等獎的概率約為32%,

所以獲二等獎的人數(shù)估計為800×32%=256人。有   ------------------------13分

答:獲二等獎的大約有256人。       -----------------------------------14分

 

16.解:(1) B=600,AC=1200, C=1200 A,

∴ sinA-sinC cos(AC

sinA cosA[1-2sin2A-60°)]=

∴sin(A-60°)[1- sin(A-60°)]=0?      -------------------------4分

∴sin(A-60°)=0或sin(A-60°)= 又0°<A<120°,

A=60°或105°.???                          -------------------------8分

(2) 當(dāng)A=60°時,acsinB×42sin360°=         ------------11分

當(dāng)A=105°時,?S×42?sin105°sin15°sin60°=  ----------------14分

17.解:(1)如四面體A1-ABC或四面體C1-ABC或四面體A1-ACD或四面體C1-ACD; ---4分

(2)如四面體B1-ABC或四面體D1-ACD;        -------------------------8分

(3)如四面體A-B1CD1(3分 );              -------------------------11分

設(shè)長方體的長、寬、高分別為,則 .---------14分

18.(1)如圖,由光學(xué)幾何知識可知,點關(guān)于的對稱點在過點且傾斜角為的直線上。在中,橢圓長軸長,   ----4分

又橢圓的半焦距,∴,

∴所求橢圓的方程為.             -----------------------------7分

   (2)路程最短即為上上的點到圓的切線長最短,由幾何知識可知,應(yīng)為過原點且與垂直的直線與的交點,這一點又與點關(guān)于對稱,∴,故點的坐標(biāo)為.                                 -------------------------15分

注:用代數(shù)方法求解同樣分步給分!

19. 解:(1)若,對于正數(shù),的定義域為,但 的值域,故,不合要求.  --------------------------2分

,對于正數(shù)的定義域為. -----------------3分

由于此時,

故函數(shù)的值域.    ------------------------------------6分

由題意,有,由于,所以.------------------8分

20.解:(1)依題意數(shù)列的通項公式是

故等式即為,

同時有

兩式相減可得 ------------------------------3分

可得數(shù)列的通項公式是,

知數(shù)列是首項為1,公比為2的等比數(shù)列。 ---------------------------4分

(2)設(shè)等比數(shù)列的首項為,公比為,則,從而有:

,

,

          -----------------------------6分

,

要使是與無關(guān)的常數(shù),必需,  ----------------------------8分

即①當(dāng)?shù)缺葦?shù)列的公比時,數(shù)列是等差數(shù)列,其通項公式是;

②當(dāng)?shù)缺葦?shù)列的公比不是2時,數(shù)列不是等差數(shù)列.    ------------9分

(3)由(2)知,    ------------------------------------------10分

  --------------14分

    ----------------------------16分

 

 

        分

      評卷人

      17.(本題滿分14分)

       

       

       

      數(shù)學(xué)卷附加題參考答案

      1.的中點,

       

      2.解: (1)   ;           ---------------------------------------------------------4分

      (2)矩陣的特征多項式為  ,

      ,    -----------------------------------------------------------------------5分

      當(dāng) ,當(dāng).  ----------------------------------------6分

      ,得.  -------------------------------------7分

                      .--------------------10分

       

       

       

      4.簡證:(1)∵,∴, ,,三個同向正值不等式相乘得.------------------------------5分

      簡解:(2)時原不等式仍然成立.

      思路1:分類討論、、證;

      思路2:左邊=.-------------------------------------10分

       

      5.(1)記“該生考上大學(xué)”的事件為事件A,其對立事件為,則

             碼---------------------------------------------------------------2分

             ----------------------------------------------4分

             (2)參加測試次數(shù)的可能取值為2,3,4,5,--------------------------------------5分

            

             ,

             ,

             +.  --------------------------------------------------8分

             故的分布列為:

      2

      3

      4

      5

      P

             .       --------------------------------9分

             答:該生考上大學(xué)的概率為;所求數(shù)學(xué)期望是.----------------------------10分

       

       

       


      同步練習(xí)冊答案