1.若集合中元素是△ABC的三邊長(zhǎng).則△ABC一定不是 A.銳角三角形 B.直角三角形 C.鈍角三角形 D.等腰三角形 查看更多

 

題目列表(包括答案和解析)

若集合中元素是△ABC的三邊長(zhǎng),則△ABC一定不是(     )

  A.銳角三角形       B.直角三角形     C.鈍角三角形    D.等腰三角形

 

查看答案和解析>>

若集合中元素是△ABC的三邊長(zhǎng),則△ABC一定不是(     )

  A.銳角三角形       B.直角三角形     C.鈍角三角形    D.等腰三角形

 

查看答案和解析>>

若集合中元素是△ABC的三邊長(zhǎng),則△ABC一定不是

A.銳角三角形            B.直角三角形            C.鈍角三角形          D.等腰三角形

查看答案和解析>>

若集合中元素是△ABC的三邊長(zhǎng),則△ABC一定不是

A.銳角三角形            B.直角三角形            C.鈍角三角形            D.等腰三角形

查看答案和解析>>

若集合中元素是△ABC的三邊長(zhǎng),則△ABC一定不是

A.銳角三角形            B.直角三角形            C.鈍角三角形            D.等腰三角形

查看答案和解析>>

一、選擇題:(每題5分,共60分)

<source id="xfgzk"></source>
    <i id="xfgzk"><del id="xfgzk"></del></i>
    <p id="xfgzk"></p>
  • <noscript id="xfgzk"><progress id="xfgzk"></progress></noscript>

    20080416

    二、填空題:每題5分,共20分)

    13.   14.;  15.a=-1或a=-;   

    16.①④

    17.解:(1),

    .又.(6分)

    (2)由,

    ,.(6分)

    18.證法一:向量法

    證法二:(1)由已知有BC⊥AB,BC⊥B1B,∴BC⊥平面ABB1A1

    又A1E在平面ABB1A1內(nèi)     ∴有BC⊥A1E

    (2)取B1C的中點(diǎn)D,連接FD、BD

    ∵F、D分別是AC1、B1C之中點(diǎn),∴FD∥A1B1∥BE

    ∴四邊形EFBD為平行四邊形    ∴EF∥BD

    又BD平面BCC1B1   

    ∴EF∥面BCC1B1

    (3)過B1作B1H⊥CEFH,連BH,又B1B⊥面BAC,B1H⊥CE

    ∴BH⊥EC    ∴∠B1HB為二面角B1-EC-B平面角

    在Rt△BCE中有BE=,BC=,CE=,BH=

    又∠A1CA=      ∴BB1=AA1=AC=2   

    ∴tan∠B1HB=

    19.解(1)由已知圓的標(biāo)準(zhǔn)方程為:(x-aCosφ)2+(y-aSinφ)2=a2(a>0)

    設(shè)圓的圓心坐標(biāo)為(x,y),

    為參數(shù)),消參數(shù)得圓心的軌跡方程為:x2+y2=a2,(5分)

      (2)有方程組得公共弦的方

    程:圓X2+Y2=a2的圓心到公共弦的距離d=,(定值)

    ∴弦長(zhǎng)l=(定值)        (5分)

     

    20.(1)合格結(jié)果:0,1,2,3   相應(yīng)月盈利額X=-30,5,40,75

    (2)P(X≥40)=P(X=40)+P(X=75)=

    (3)

    X

    -30

    5

    40

    75

    P

     

    EX=54(元)    ∴6個(gè)月平均:6×54=324(元)

    21.(1)由已知:   

    依題意得:≥0對(duì)x∈成立

    ∴ax-1≥0,對(duì)x∈恒成立,即a≥,對(duì)x∈恒成立,

    ∴a≥(max,即a≥1.

    (2)當(dāng)a=1時(shí),,x∈[,2],若x∈,則,

    若x∈,則,故x=1是函數(shù)f(x)在區(qū)間[,2]上唯一的極小值點(diǎn),也就是最小值點(diǎn),故f(x)min=f(1)=0.

    又f()=1-ln2,f(2)=- +ln2,f()-f(2)=-2ln2=,

    ∵e3>2.73=19.683>16,

    ∴f()-f(2)>0   

    ∴f()>f(2)  

    ∴f(x)在[,2]上最大值是f(

    ∴f(x)在[,2]最大1-ln2,最小0

    (3)當(dāng)a=1時(shí),由(1)知,f(x)=+lnx在

    當(dāng)n>1時(shí),令x=,則x>1     ∴f(x)>f(1)=0

    即ln>

    22.解:(1)設(shè)橢圓方程為(a>b>0)

         ∴橢圓方程

    (2) ∵直線∥DM且在y軸上的截距為m,∴y=x+m

    與橢圓交于A、B兩點(diǎn)

    ∴△=(2m)2-4(2m2-4)>0-2<m<2(m≠0)

    (3)設(shè)直線MA、MB斜率分別為k1,k2,則只要證:k1+k2=0

    設(shè)A(x1,y1),B(x2,y2),則k1=,k2=

    由x2+2mx+2m2-4=0得x1+x2=-2m,x1x2=2m2-4

    而k1+k2=+= (*)

    又y1=x1+m  y2=x2+m

    ∴(*)分子=(x1+m-1)(x2-2)+( x2+m -1)(x1-2)

    =x1x2+(m-2)(x1+x2)-4(m-1)

    =2m2-4+(m-2)(-m)-4(m-1)

      =0

    ∴k1+k2=0,證之.

     

     


    同步練習(xí)冊(cè)答案
    <source id="xfgzk"><optgroup id="xfgzk"></optgroup></source><rt id="xfgzk"><kbd id="xfgzk"></kbd></rt>