對(duì)于數(shù)列{xn},從中選取若干項(xiàng),不改變它們?cè)谠瓉?lái)數(shù)列中的先后次序,得到的數(shù)列稱為是原來(lái)數(shù)列的一個(gè)子數(shù)列.某同學(xué)在學(xué)習(xí)了這一個(gè)概念之后,打算研究首項(xiàng)為a1,公差為d的無(wú)窮等差數(shù)列{an}的子數(shù)列問(wèn)題,為此,他取了其中第一項(xiàng)a1,第三項(xiàng)a3和第五項(xiàng)a5.
(1)若a1,a3,a5成等比數(shù)列,求d的值;
(2)在a1=1,d=3 的無(wú)窮等差數(shù)列{an}中,是否存在無(wú)窮子數(shù)列{bn},使得數(shù)列(bn)為等比數(shù)列?若存在,請(qǐng)給出數(shù)列{bn}的通項(xiàng)公式并證明;若不存在,說(shuō)明理由;
(3)他在研究過(guò)程中猜想了一個(gè)命題:“對(duì)于首項(xiàng)為正整數(shù)a,公比為正整數(shù)q(q>1)的無(wú)窮等比數(shù)列{cn},總可以找到一個(gè)子數(shù)列{bn},使得{dn}構(gòu)成等差數(shù)列”.于是,他在數(shù)列{cn}中任取三項(xiàng)ck,cm,cn(k<m<n),由ck+cn與2cm的大小關(guān)系去判斷該命題是否正確.他將得到什么結(jié)論?