題目列表(包括答案和解析)
(本題滿分12分)探究函數(shù),的最小值,并確定取得最小值時的值,列表如下:
… |
0.5 |
1 |
1.5 |
1.7 |
1.9 |
2 |
2.1 |
2.2 |
2.3 |
3 |
4 |
5 |
7 |
… |
|
… |
8.5 |
5 |
4.17 |
4.05 |
4.005 |
4 |
4.005 |
4.102 |
4.24 |
4.3 |
5 |
5.8 |
7.57 |
… |
請觀察表中值隨值變化的特點,完成下列問題:
(1) 當時,在區(qū)間上遞減,在區(qū)間 上遞增;
所以,= 時, 取到最小值為 ;
(2) 由此可推斷,當時,有最 值為 ,此時= ;
(3) 證明: 函數(shù)在區(qū)間上遞減;
(4) 若方程在內(nèi)有兩個不相等的實數(shù)根,求實數(shù)的取值范圍。
(本題滿分12分)探究函數(shù),的最小值,并確定取得最小值時的值,列表如下:
… | 0.5 | 1 | 1.5 | 1.7 | 1.9 | 2 | 2.1 | 2.2 | 2.3 | 3 | 4 | 5 | 7 | … | |
… | 8.5 | 5 | 4.17 | 4.05 | 4.005 | 4 | 4.005 | 4.102 | 4.24 | 4.3 | 5 | 5.8 | 7.57 | … |
請觀察表中值隨值變化的特點,完成下列問題:
(1) 當時,在區(qū)間上遞減,在區(qū)間 上遞增;
所以,= 時, 取到最小值為 ;
(2) 由此可推斷,當時,有最 值為 ,此時= ;
(3) 證明: 函數(shù)在區(qū)間上遞減;
(4) 若方程在內(nèi)有兩個不相等的實數(shù)根,求實數(shù)的取值范圍。
… | 0.5 | 1 | 1.5 | 1.7 | 1.9 | 2 | 2.1 | 2.2 | 2.3 | 3 | 4 | 5 | 7 | … | |
… | 8.5 | 5 | 4.17 | 4.05 | 4.005 | 4 | 4.005 | 4.102 | 4.24 | 4.3 | 5 | 5.8 | 7.57 | … |
已知點P在半徑為1的半圓周上沿著A→P→B路徑運動,設弧的長度為x,弓形面積為f(x)(如圖所示的陰影部分),則關于函數(shù)y=f(x)的有如下結(jié)論:
①函數(shù)y=f(x)的定義域和值域都是[0,π];
②如果函數(shù)y=f(x)的定義域R,則函數(shù)y=f(x)是周期函數(shù);
③如果函數(shù)y=f(x)的定義域R,則函數(shù)y=f(x)是奇函數(shù);
④函數(shù)y=f(x)在區(qū)間[0,π]上是單調(diào)遞增函數(shù).
以上結(jié)論的正確個數(shù)是
A.1
B.2
C.3
D.4
設函數(shù)
(1)當時,求曲線處的切線方程;
(2)當時,求的極大值和極小值;
(3)若函數(shù)在區(qū)間上是增函數(shù),求實數(shù)的取值范圍.
【解析】(1)中,先利用,表示出點的斜率值這樣可以得到切線方程。(2)中,當,再令,利用導數(shù)的正負確定單調(diào)性,進而得到極值。(3)中,利用函數(shù)在給定區(qū)間遞增,說明了在區(qū)間導數(shù)恒大于等于零,分離參數(shù)求解范圍的思想。
解:(1)當……2分
∴
即為所求切線方程!4分
(2)當
令………………6分
∴遞減,在(3,+)遞增
∴的極大值為…………8分
(3)
①若上單調(diào)遞增!酀M足要求。…10分
②若
∵恒成立,
恒成立,即a>0……………11分
時,不合題意。綜上所述,實數(shù)的取值范圍是
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com