18. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分14分)

已知函數(shù)

(1)證明:

(2)若數(shù)列的通項公式為,求數(shù)列 的前項和;w.w.w.k.s.5.u.c.o.m    

(3)設數(shù)列滿足:,設

若(2)中的滿足對任意不小于2的正整數(shù),恒成立,

試求的最大值。

查看答案和解析>>

(本小題滿分14分)已知,點軸上,點軸的正半軸,點在直線上,且滿足,. w.w.w.k.s.5.u.c.o.m    

(Ⅰ)當點軸上移動時,求動點的軌跡方程;

(Ⅱ)過的直線與軌跡交于、兩點,又過、作軌跡的切線、,當,求直線的方程.

查看答案和解析>>

(本小題滿分14分)設函數(shù)

 (1)求函數(shù)的單調區(qū)間;

 (2)若當時,不等式恒成立,求實數(shù)的取值范圍;w.w.w.k.s.5.u.c.o.m    

 (3)若關于的方程在區(qū)間上恰好有兩個相異的實根,求實數(shù)的取值范圍。

查看答案和解析>>

(本小題滿分14分)

已知,其中是自然常數(shù),

(1)討論時, 的單調性、極值;w.w.w.k.s.5.u.c.o.m    

(2)求證:在(1)的條件下,

(3)是否存在實數(shù),使的最小值是3,若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

(本小題滿分14分)

設數(shù)列的前項和為,對任意的正整數(shù),都有成立,記

(I)求數(shù)列的通項公式;

(II)記,設數(shù)列的前項和為,求證:對任意正整數(shù)都有

(III)設數(shù)列的前項和為。已知正實數(shù)滿足:對任意正整數(shù)恒成立,求的最小值。

查看答案和解析>>

一、選擇題:

  

1

2

3

4

5

6

7

8

9

10

A

D

A

D

B

C

A

C

B

A

二、填空題:

11.       12.         13.       14.    15.64

16.設是三棱錐四個面上的高為三棱錐內任一點,到相應四個面的距離分別為我們可以得到結論:

17.

 

三、解答題:

18.解:(1)由圖像知 , ,,又圖象經(jīng)過點(-1,0)

  

      

   (2)

  

     ,  

時,的最大值為,當,

 即時,  最小值為

 

19.(1)由幾何體的正視圖、側視圖、俯視圖的面積總和為8得中點,聯(lián)結,分別是的中點,,,E、F、F、G四點共面

平面,平面

(2)就是二面角的平面角

中,, 

,即二面角的大小為

解法二:建立如圖所示空間直角坐標系,設平面

的一個法向量為

        

,又平面的法向量為(1,0,0)

(3)設

平面是線段的中點

 

20.解(1)由題意可知

  又

(2)兩類情況:共擊中3次概率

共擊中4次概率

所求概率為

(3)設事件分別表示甲、乙能擊中,互相獨立。

為所 求概率

 

21.解(1)設過拋物線的焦點的直線方程為(斜率不存在),則    得,

(斜率不存在)時,則

  所求拋物線方程為

(2)設

由已知直線的斜率分別記為:,得

    

  

 

22.解:(I)依題意知:直線是函數(shù)在點(1,0)處的切線,故其斜率所以直線的方程為

又因為直線的圖像相切  所以由

   (Ⅱ)因為所以

時,  當時, 

因此,上單調遞增,在上單調遞減。

因此,當時,取得最大值

(Ⅲ)當時,,由(Ⅱ)知:當時,,即因此,有

 


同步練習冊答案