如圖.點..是相應(yīng)橢圓的焦點..和 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)已知半橢圓
x2
a2
+
y2
b2
=1(x≥0)
與半橢圓
y2
b2
+
x2
c2
=1(x≤0)
組成的曲線稱為“果圓”,其中a2=b2+c2,a>0,b>c>0.如圖,設(shè)點F0,F(xiàn)1,F(xiàn)2是相應(yīng)橢圓的焦點,A1,A2和B1,B2是“果圓”與x,y軸的交點,
(1)若三角形F0F1F2是邊長為1的等邊三角形,求“果圓”的方程;
(2)若|A1A|>|B1B|,求
b
a
的取值范圍;
(3)一條直線與果圓交于兩點,兩點的連線段稱為果圓的弦.是否存在實數(shù)k,使得斜率為k的直線交果圓于兩點,得到的弦的中點的軌跡方程落在某個橢圓上?若存在,求出所有k的值;若不存在,說明理由.

查看答案和解析>>

精英家教網(wǎng)我們把由半橢圓
x2
a2
+
y2
b2
=1(x≥0)
與半橢圓
y2
b2
+
x2
c2
=1(x<0)
合成的曲線稱作“果圓”(其中a2=b2+c2,a>b>c>0).如圖,設(shè)點F0,F(xiàn)1,F(xiàn)2是相應(yīng)橢圓的焦點,A1、A2和B1、B2是“果圓”與x,y軸的交點,若△F0F1F2是邊長為1的等邊三角,則a,b的值分別為( 。
A、
7
2
,1
B、
3
,1
C、5,3
D、5,4

查看答案和解析>>

我們把由半橢圓

合成的曲線稱作“果圓”(其中)。如圖,設(shè)點是相應(yīng)橢圓的焦點,A1、A2和B1、B2是“果圓”與xy軸的交點,若△F0F1F2是邊長為1的等邊三角形,則ab的值分別為 (     )

     A.     B.      C.5,3         D.5,4

 

查看答案和解析>>

我們把由半橢圓
x2
a2
+
y2
b2
=1(x≥0)
與半橢圓
y2
b2
+
x2
c2
=1(x<0)
合成的曲線稱作“果圓”(其中a2=b2+c2,a>b>c>0).如圖,設(shè)點F0,F(xiàn)1,F(xiàn)2是相應(yīng)橢圓的焦點,A1、A2和B1、B2是“果圓”與x,y軸的交點,若△F0F1F2是邊長為1的等邊三角,則a,b的值分別為( 。
A.
7
2
,1
B.
3
,1
C.5,3D.5,4
精英家教網(wǎng)

查看答案和解析>>

21.我們把由半橢圓 與半橢圓 合成的曲線稱作“果圓”,其中,,.

如圖,點、是相應(yīng)橢圓的焦點,、分別是“果圓”與、軸的交點.

(1)若是邊長為1的等邊三角形,求“果圓”的方程;

    (2)當(dāng)時,求的取值范圍;

(3)連接“果圓”上任意兩點的線段稱為“果圓”的弦.試研究:是否存在實數(shù),使斜率為的“果圓”平行弦的中點軌跡總是落在某個橢圓上?若存在,求出所有可能的值;若不存在,說明理由.

查看答案和解析>>


同步練習(xí)冊答案