為不為0的常數(shù).∴是等比數(shù)列. 查看更多

 

題目列表(包括答案和解析)

等比數(shù)列{an}的前n項(xiàng)和為Sn,已知對(duì)任意的n∈N*,點(diǎn)(n,Sn),均在函數(shù)y=bx+r(b>0且b≠1,b,r均為常數(shù))的圖象上.  
(1)求r的值;
(2)當(dāng)b=2時(shí),記bn=
n+1
4an
(n∈N*),求數(shù)列{bn} 的前n項(xiàng)和Tn
(3)由(2),是否存在最小的整數(shù)m,使得對(duì)于任意的n∈N*,均有3-2Tn
m
20
,若存在,求出m的值,若不存在,說明理由.

查看答案和解析>>

等比數(shù)列{an}的前n項(xiàng)和為Sn,已知對(duì)任意的n∈N*,點(diǎn)(n,Sn),均在函數(shù)y=bx+r(b>0且b≠1,b,r均為常數(shù))的圖象上.  
(1)求r的值;
(2)當(dāng)b=2時(shí),記bn=(n∈N*),求數(shù)列{bn} 的前n項(xiàng)和Tn
(3)由(2),是否存在最小的整數(shù)m,使得對(duì)于任意的n∈N*,均有,若存在,求出m的值,若不存在,說明理由.

查看答案和解析>>

已知等比數(shù)列{an}的公比為q,首項(xiàng)為a1,其前n項(xiàng)的和為Sn.?dāng)?shù)列{an2}的前n項(xiàng)的和為An,數(shù)列{(-1)n+1an}的前n項(xiàng)的和為Bn
(1)若A2=5,B2=-1,求{an}的通項(xiàng)公式;
(2)①當(dāng)n為奇數(shù)時(shí),比較BnSn與An的大小;
②當(dāng)n為偶數(shù)時(shí),若|q|≠1,問是否存在常數(shù)λ(與n無關(guān)),使得等式(Bn-λ)Sn+An=0恒成立,若存在,求出λ的值;若不存在,說明理由.

查看答案和解析>>

數(shù)列An的前m項(xiàng)為A1,A2,…,Am,若對(duì)任意正整數(shù)n,有A(n+m)=An•q(其中q為常數(shù),q不等于0,1),則稱數(shù)列An是以m為周期,以q為周期公比的似周期性等比數(shù)列.已知似周期性等比數(shù)列Bn的前7項(xiàng)為1,1,1,1,1,1,2,周期為7,周期公比為3,則數(shù)列Bn前7k+1項(xiàng)的和
 
.(k為正整數(shù)).

查看答案和解析>>

數(shù)列{an}中,a1=2,an+1=an+c•n(c是不為零的常數(shù),n∈N+),且a1,a2,a3成等比數(shù)列.  
(1)求c的值;     
(2)求{an}的通項(xiàng)公式;  
(3)若數(shù)列{
an-cn•cn
}
的前n項(xiàng)之和為Tn,求證Tn∈[0,1).

查看答案和解析>>


同步練習(xí)冊答案