我們把平面內(nèi)與直線垂直的非零向量稱為直線的法向量.在平面直線坐標(biāo)系中.利用求動(dòng)點(diǎn)軌跡方程的方法.可以求出過(guò)點(diǎn).且法向量為的直線方程為.化簡(jiǎn)得. 類(lèi)比以上方法.在空間直角坐標(biāo)系中.經(jīng)過(guò)點(diǎn)且法向量為的平面方程為 查看更多

 

題目列表(包括答案和解析)

我們把平面內(nèi)與直線垂直的非零向量稱為直線的法向量.在平面直角坐標(biāo)系中,利用求動(dòng)點(diǎn)軌跡方程的方法,可以求出過(guò)點(diǎn)A(2,1)且法向量為n=(-1,2)的直線(點(diǎn)法式)方程為-(x-2)+2(y-1)=0,化簡(jiǎn)后得x-2y=0.類(lèi)比以上求法,在空間直角坐標(biāo)系中,經(jīng)過(guò)點(diǎn)A(2,1,3),且法向量為n=(-1,2,1)的平面(點(diǎn)法式)方程為_(kāi)_____________(請(qǐng)寫(xiě)出化簡(jiǎn)后的結(jié)果).

查看答案和解析>>

我們把平面內(nèi)與直線垂直的非零向量稱為直線的法向量,在平面直角坐標(biāo)系中,利用求動(dòng)點(diǎn)軌跡方程的方法,可以求出過(guò)點(diǎn)A(—3,4),且法向量為的直線(點(diǎn)法式)方程為類(lèi)比以上方法,在空間直角坐標(biāo)系中,經(jīng)過(guò)點(diǎn)A(1,2,3)且法向量為的平面(點(diǎn)法式)方程為        。(請(qǐng)寫(xiě)出化簡(jiǎn)后的結(jié)果)

查看答案和解析>>

我們把平面內(nèi)與直線垂直的非零向量稱為直線的法向量,在平面直角坐標(biāo)系中,利用求動(dòng)點(diǎn)軌跡方程的方法,可以求出過(guò)點(diǎn)A(—3,4),且法向量為的直線(點(diǎn)法式)方程為類(lèi)比以上方法,在空間直角坐標(biāo)系中,經(jīng)過(guò)點(diǎn)A(1,2,3)且法向量為的平面(點(diǎn)法式)方程為        。(請(qǐng)寫(xiě)出化簡(jiǎn)后的結(jié)果)

 

查看答案和解析>>

我們把平面內(nèi)與直線垂直的非零向量稱為直線的法向量,在平面直角坐標(biāo)系中,利用求動(dòng)點(diǎn)軌跡方程的方法,可以求出過(guò)點(diǎn)A(-3,4),且法向量為=(1,-2)的直線(點(diǎn)法式)方程為:1×(x+3)+(-2)×(y-4)=0,化簡(jiǎn)得x-2y+11=0.類(lèi)比以上方法,在空間直角坐標(biāo)系o-xyz中,經(jīng)過(guò)點(diǎn)A(1,2,3)且法向量為=(-1,-2,1)的平面的方程為_(kāi)___________          

(化簡(jiǎn)后用關(guān)于x,y,z的一般式方程表示)

 

查看答案和解析>>

我們把平面內(nèi)與直線垂直的非零向量稱為直線的法向量,在平面直線坐標(biāo)系中,利用求動(dòng)點(diǎn)軌跡方程的方法,可以求出過(guò)點(diǎn),且法向量為的直線(點(diǎn)法式)方程為,化簡(jiǎn)得. 類(lèi)比以上方法,在空間直角坐標(biāo)系中,經(jīng)過(guò)點(diǎn)且法向量為的平面(點(diǎn)法式)方程為******      。(請(qǐng)寫(xiě)出化簡(jiǎn)后的結(jié)果)

 

查看答案和解析>>


同步練習(xí)冊(cè)答案