8定義在上的奇函數(shù)為增函數(shù).偶函數(shù)在區(qū)間的圖象與的圖象重合.設(shè).給出下列不等式:1)f-g(-b) 2) f-g(-b)3) f-g(-a) 4) f-g(-a)其中成立的是( C )A 1)與2) B 2)與3) C 1)與3) D 2)與4) 查看更多

 

題目列表(包括答案和解析)

下列幾個(gè)命題:
①函數(shù)f(x)=x2+(a-3)x+a有兩個(gè)零點(diǎn),一個(gè)比0大,一個(gè)比0小,則a<0;
②函數(shù)y=
x2-1
+
1-x2
是偶函數(shù),但不是奇函數(shù);
③函數(shù)f(x)的值域是[-2,2],則函數(shù)f(x+1)的值域?yàn)閇-3,1];
④函數(shù)f(x)的定義域?yàn)閇-2,4],則函數(shù)f(3x-4)的定義域是[-10,8],
⑤函數(shù)y=ax(a>0且a≠1)與函數(shù)y=logaax(a>0且a≠1)的定義域相同;
⑥函數(shù)y=(x-1)2與y=2x-1在區(qū)間[0,+∞)上都是增函數(shù),
其中正確的有
①⑤
①⑤

查看答案和解析>>

下列幾個(gè)命題:
①函數(shù)f(x)=x2+(a-3)x+a有兩個(gè)零點(diǎn),一個(gè)比0大,一個(gè)比0小,則a<0;
②函數(shù)y=
x2-1
+
1-x2
是偶函數(shù),但不是奇函數(shù);
③函數(shù)f(x)的值域是[-2,2],則函數(shù)f(x+1)的值域?yàn)閇-3,1];
④函數(shù)f(x)的定義域?yàn)閇-2,4],則函數(shù)f(3x-4)的定義域是[-10,8],
⑤函數(shù)y=ax(a>0且a≠1)與函數(shù)y=logaax(a>0且a≠1)的定義域相同;
⑥函數(shù)y=(x-1)2與y=2x-1在區(qū)間[0,+∞)上都是增函數(shù),
其中正確的有______.

查看答案和解析>>

下列幾個(gè)命題:
①函數(shù)f(x)=x2+(a-3)x+a有兩個(gè)零點(diǎn),一個(gè)比0大,一個(gè)比0小,則a<0;
②函數(shù)是偶函數(shù),但不是奇函數(shù);
③函數(shù)f(x)的值域是[-2,2],則函數(shù)f(x+1)的值域?yàn)閇-3,1];
④函數(shù)f(x)的定義域?yàn)閇-2,4],則函數(shù)f(3x-4)的定義域是[-10,8],
⑤函數(shù)y=ax(a>0且a≠1)與函數(shù)(a>0且a≠1)的定義域相同;
⑥函數(shù)y=(x-1)2與y=2x-1在區(qū)間[0,+∞)上都是增函數(shù),
其中正確的有   

查看答案和解析>>

函數(shù)是定義在上的奇函數(shù),且。

(1)求實(shí)數(shù)a,b,并確定函數(shù)的解析式;

(2)判斷在(-1,1)上的單調(diào)性,并用定義證明你的結(jié)論;

(3)寫出的單調(diào)減區(qū)間,并判斷有無(wú)最大值或最小值?如有,寫出最大值或最小值。(本小問(wèn)不需要說(shuō)明理由)

【解析】本試題主要考查了函數(shù)的解析式和奇偶性和單調(diào)性的綜合運(yùn)用。第一問(wèn)中,利用函數(shù)是定義在上的奇函數(shù),且。

解得

(2)中,利用單調(diào)性的定義,作差變形判定可得單調(diào)遞增函數(shù)。

(3)中,由2知,單調(diào)減區(qū)間為,并由此得到當(dāng),x=-1時(shí),,當(dāng)x=1時(shí),

解:(1)是奇函數(shù),

,,………………2分

,又,,,

(2)任取,且

,………………6分

,,

在(-1,1)上是增函數(shù)!8分

(3)單調(diào)減區(qū)間為…………………………………………10分

當(dāng),x=-1時(shí),,當(dāng)x=1時(shí),。

 

查看答案和解析>>


同步練習(xí)冊(cè)答案