的結(jié)論下.設(shè)..求函數(shù)的最小值. 查看更多

 

題目列表(包括答案和解析)

函數(shù)f(x)=x3+
12
ax2+x+1
(x∈R).
(1)若f(x)在x∈(-∞,+∞)上是增函數(shù),求實數(shù)a的取值范圍;
(2)在(1)的條件下,設(shè)g(x)=e2x-aex,x∈[0,ln2],求函數(shù)g(x)的最小值;
(3)當(dāng)a=0時,曲線y=f(x)的切線的斜率的取值范圍記為集合A,曲線y=f(x)上不同兩點P(x1,y1),Q(x2,y2)連線的斜率的取值范圍記為集合B,你認(rèn)為集合A,B之間有怎樣的關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

函數(shù)f(x)=x3+
1
2
ax2+x+1
(x∈R).
(1)若f(x)在x∈(-∞,+∞)上是增函數(shù),求實數(shù)a的取值范圍;
(2)在(1)的條件下,設(shè)g(x)=e2x-aex,x∈[0,ln2],求函數(shù)g(x)的最小值;
(3)當(dāng)a=0時,曲線y=f(x)的切線的斜率的取值范圍記為集合A,曲線y=f(x)上不同兩點P(x1,y1),Q(x2,y2)連線的斜率的取值范圍記為集合B,你認(rèn)為集合A,B之間有怎樣的關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

設(shè)函數(shù)f(x)=x2+x.(1)解不等式:f(x)<0;(2)請先閱讀下列材料,然后回答問題.
材料:已知函數(shù)g(x)=,問函數(shù)g(x)是否存在最大值或最小值?若存在,求出最大值或最小值;若不存在,說明理由.一個同學(xué)給出了如下解答:
解:令u=-f(x)=-x2-x,則u=-(x+2+,
當(dāng)x=-時,u有最大值,umax=,顯然u沒有最小值,
∴當(dāng)x=-時,g(x)有最小值4,沒有最大值.
請回答:上述解答是否正確?若不正確,請給出正確的解答;
(3)設(shè)an=,請?zhí)岢龃藛栴}的一個結(jié)論,例如:求通項an.并給出正確解答.
注意:第(3)題中所提問題單獨給分,.解答也單獨給分.本題按照所提問題的難度分層給分,解答也相應(yīng)給分,如果同時提出兩個問題,則就高不就低,解答也相同處理.

查看答案和解析>>

已知函數(shù)f(x)=
13
x3+ax2+bx,且f′(-1)=0.
(1)試用含a的代數(shù)式表示b,并求f(x)的單調(diào)區(qū)間;
(2)令a=-1,設(shè)函數(shù)f(x)在x1,x2(x1<x2)處取得極值,記點M (x1,f(x1)),N(x2,f(x2)),P(m,f(m)),x1<m<x2,請仔細(xì)觀察曲線f(x)在點P處的切線與線段MP的位置變化趨勢,并解釋以下問題:
(Ⅰ)若對任意的t∈(x1,x2),線段MP與曲線f(x)均有異于M,P的公共點,試確定t的最小值,并證明你的結(jié)論;
(Ⅱ)若存在點Q(n,f(n)),x≤n<m,使得線段PQ與曲線f(x)有異于P、Q的公共點,請直接寫出m的取值范圍(不必給出求解過程).

查看答案和解析>>

已知函數(shù)f(x)=lnx,g(x)=
12
ax2+bx (a≠0).

(Ⅰ)若a=-2時,函數(shù)h(x)=f(x)-g(x)在其定義域是增函數(shù),求b的取值范圍;
(Ⅱ)在(Ⅰ)的結(jié)論下,設(shè)函數(shù)φ(x)=e2x+bex,x∈[0,ln2],求函數(shù)φ(x)的最小值;

查看答案和解析>>

一、選擇題:(本大題共8小題,每小題5分,滿分40分.在每小題給出的四個選項中。只有一項是符合題目要求的。)

     B、D、C、A      B、A、D、B

二、填空題:(本大題共7小題,每小題5分,滿分30分。其中13~15題是選做題,考生只能選做兩題,三題全答的,只計算前兩題得分。)

9、;  10、800;    11、①③④;   12、,1005;

13、   14、;   15、

三、解答題:(本大題共6小題,滿分80分.解答須寫出文字說明、證明過程和演算步驟。)

16、(1)證明:∵PA⊥底面ABCD,MN底面ABCD

∴MN⊥PA   又MN⊥AD   且PA∩AD = A

∴MN⊥平面PAD  ………………………………………………4分

MN平面PMN   ∴平面PMN⊥平面PAD  ……………………6分

(2)∵BC⊥BA   BC⊥PA   PA∩BA = A   ∴BC⊥平面PBA

∴∠BPC為直線PC與平面PBA所成的角                  

……………………………………………10分

中,

  ………………12分

17、解:(1)由題意可知、、、這5個點相鄰兩點間的弧長為

的可能的取值有,2,3,4

 ,

于是=×+2×+3×+4×=2!6分

 

 

 

(2)連結(jié)MP,取線段MP的中點D,則OD⊥MP,易求得OD=,

當(dāng)S點在線段MP上時,三角形SAB的面積等于××8 =,

所以只有當(dāng)S點落在陰影部分時,面積才能大于,

S陰影 = S扇形OMP - S△OMP = ××-×= 4-8,

所以由幾何概型公式的三角形SAB的面積大于的概

率P =。  …………………12分

18、解:(1)證明:在中,由題設(shè),AD = 2可得

,于是。在矩形中,.

,所以平面.…………………………………….4分

(2)解:由題設(shè),,所以(或其補(bǔ)角)是異面直線所成的角.

中,由余弦定理得

由(1)知平面,平面

所以,因而,于是是直角三角形,

………………………….8分

(3)解:過點P做于H,過點H做于E,連結(jié)PE

平面,平面.又,

因而平面,平面

,平面,又平面

,從而是二面角的平面角…………….12分

由題設(shè)可得,

于是在中,….14分

19、解: (1)依題意知,數(shù)列6ec8aac122bd4f6e是一個以500為首項,-20為公差的等差數(shù)列,所以

6ec8aac122bd4f6e,   ……………3分

6ec8aac122bd4f6e6ec8aac122bd4f6e

6ec8aac122bd4f6e6ec8aac122bd4f6e  …………………7分

 (Ⅱ)依題意得,6ec8aac122bd4f6e,即6ec8aac122bd4f6e

可化簡得6ec8aac122bd4f6e, ①            …………………10分

6ec8aac122bd4f6e可設(shè)6ec8aac122bd4f6e,6ec8aac122bd4f6e6ec8aac122bd4f6e,6ec8aac122bd4f6e可知6ec8aac122bd4f6e是減函數(shù),

6ec8aac122bd4f6e是增函數(shù),   又6ec8aac122bd4f6e

時不等式①成立          …………………13分

答:從今年起該企業(yè)至少經(jīng)過4年,進(jìn)行技術(shù)改造后的累計純利潤超過不進(jìn)行技術(shù)改造的累計純利潤……………………………………………….……14分

20、(1)連接E、F分別為、DB的中點, EF//

平面,EF平面

 EF//平面………………………………………………………4分

   (2)正方體中,平面,平面

,正方形中,,

= B,AB、平面,

平面,平面,所以,又EF//,

所以EF. ……………………………………………………………9分

(3)正方體的棱長為2,分別為、DB的中點。

     

       

       

     

             

              ……………………………..………………14分

21、解:(1)…………………………………2分

上是增函數(shù),上恒成立

…………………………………………4分

(當(dāng)且僅當(dāng)時取等號)

所以  ……………………..………………6分

(2)設(shè),則

當(dāng)時,在區(qū)間上是增函數(shù)

所以的最小值為 ……………………………………………10分

當(dāng)時,

因為函數(shù)在區(qū)間上是增函數(shù),在區(qū)間上也是增函數(shù),

上為連續(xù)函數(shù),所以上為增函數(shù),

所以的最小值為

……………………………………14分

 

 

 

 


同步練習(xí)冊答案